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(Mis)conceptions about particle filters

Something useful only for very specific models (hidden Markov
models, state-space models);

Or alternatively something as versatile as MCMC

Which one it is?
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Quick look

Let’s have a quick look at a particle filter.



Structure

Algorithm 1: Generic PF algorithm
Operations involving index n must be performed

for n = 1, . . . , N.

Xn
0 ∼M0(dx0)

wn
0 ← G0(Xn

0 )
W n

0 ← wn
0 /

∑N
m=1 wm

0

for t = 1 to T do
A1:N

t ∼ resample(W 1:N
t−1)

Xn
t ∼ Mt(XAn

t
t−1, dxt)

wn
t ← Gt(XAn

t
t−1, Xn

t )
W n

t ← wn
t /

∑N
m=1 wm

t



Comments

All particle filters have (essentially) this structure. (Let’s ignore
variations based on alternative resampling schemes, etc.)

The user must specify:
kernel Mt(xt−1, dxt): that’s how we simulate particle X n

t , given
a certain ancestor XAn

t
t−1;

Function Gt(xt−1, xt); that’s how we reweight/grade particle X n
t

(and its ancestor).

Easy part: How. Less easy: Why
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Objectives

The aim of this chapter is to define state-space models, give
examples of such models from various areas of science, and discuss
their main properties.
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A first definition (with functions)

A time series model that consists of two discrete-time processes
{Xt}:= (Xt)t≥0, {Yt}:= (Yt)t≥0, taking values respectively in
spaces X and Y, such that

Xt = Kt(Xt−1, Ut , θ), t ≥ 1
Yt = Ht(Xt , Vt , θ), t ≥ 0

where K0, Kt , Ht , are determistic functions, {Ut}, {Vt} are
sequences of i.i.d. random variables (noises, or shocks), and θ ∈ Θ is
an unknown parameter.

This is a popular way to define SSMs in Engineering. Rigorous, but
not sufficiently general.
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A second definition (with densities)

pθ(x0) = pθ
0(x0)

pθ(xt |x0:t−1) = pθ
t (xt |xt−1) t ≥ 1

pθ(yt |x0:t , y0:t−1) = f θ
t (yt |xt)

Not so rigorous (or not general enough): some models are such that
Xt |Xt−1 does not admit a probability density (with respect to a
fixed dominating measure).
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Signal processing: tracking, positioning, navigation

Xt is position of a moving object, e.g.

Xt = Xt−1 + Ut , Ut ∼ N2(0, σ2I2),

and Yt is a measurement obtained by e.g. a radar,

Yt = atan
(Xt(2)

Xt(1)

)
+ Vt , Vt ∼ N1(0, σ2

Y ).

and θ = (σ2, σ2
Y ).

(This is called the bearings-only tracking model.)
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Corresponding plot

Yt−1

Yt

Xt

Xt−1
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GPS

In GPS applications, the velocity vt of the vehicle is observed, so
motion model is (some variation of):

Xt = Xt−1 + vt + Ut , Ut ∼ N2(0, σ2I2).

Also Yt usually consists of more than one measurement.
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More advanced motion model

A random walk is too erratic for modelling the position of the target;
assume instead its velocitity follows a random walk. Then define:

Xt =
(

I2 I2
02×2 I2

)
Xt−1 +

(
02
Ut

)
, Ut ∼ N2(0, σ2I2),

with obvious meanings for vector 02 and matrices 02×2, I2.

Note: Xt(1) and Xt(2) (position) are deterministic functions of
Xt−1: no probability density for Xt |Xt−1.
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multi-target tracking

Same ideas except {Xt} now represent the position (and velocity if
needed) of a set of targets (of random size); i.e. {Xt} is a point
process.

nicolas.chopin@ensae.fr Introduction to state-space models



Presentation of state-space models
Examples of state-space models

Sequential analysis of state-space models

Time series of counts (neuro-decoding, astrostatistics,
genetics)

Neuro-decoding: Yt is a vector of dy counts (spikes from
neuron k),

Yt(k)|Xt ∼ P(λk(Xt)), log λk(Xt) = αk + βkXt ,

and Xt is position+velocity of the subject’s hand (in 3D).

astro-statistics: Yt is number of photon emissions; intensity
varies over time (according to an auto-regressive process)

Yt is the number of ‘reads’, which is a noisy measurement of
the transcription level Xt at position t in the genome;

Note: ‘functional’ definition of state-space models is less convenient
in this case.
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Stochastic volatility (basic model)

Yt is log-return of asset price, Yt = log(pt/pt−1),

Yt |Xt = xt ∼ N (0, exp(xt))

where {Xt} is an auto-regressive process:

Xt − µ = ϕ(Xt−1 − µ) + Ut , Ut ∼ N (0, σ2)

and θ = (µ, ϕ, σ2).

Take |ϕ| < 1 and X0 ∼ N(µ, σ2/(1 − ρ2)) to impose stationarity.
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Stochastic volatility (variations)

Student dist’ for noises

skewness: Yt = αXt + exp(Xt/2)Vt

leverage effect: correlation between Ut and Vt

multivariate extensions
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Panel data (Heiss, 2008)

For each individual i , we observe the SRHS (self-rated health
status), Yit = k iff αk−1 < Y ⋆

it ≤ αk , where Y ⋆
it is the actual health:

Y ⋆
it = Zitβ + Xit + Vit , Vit ∼ N (0, 1)

and individual effect Xit is an AR(1):

Xit = ρXi(t−1) + σ
√

1 − ρ2Uit , Uit ∼ N (0, 1).

Note: large number of univariate state-space models.
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Nonlinear dynamic systems in Ecology, Epidemiology, and
other fields

Yt = Xt + Vt , where {Xt} is some complex nonlinear dynamic
system. In Ecology for instance,

Xt = Xt−1 + θ1 − θ2 exp(θ3Xt−1) + Ut

where Xt is log of population size. For some values of θ, process is
nearly chaotic.
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Nonlinear dynamic systems: Lokta-Volterra
Predator-prey model, where X = (Z+)2, Xt(1) is the number of
preys, Xt(2) is the number of predators, and, working in
continuous-time:

Xt(1) θ1→ 2Xt(1)

Xt(1) + Xt(2) θ2→ 2Xt(2), t ∈ R+

Xt(2) θ3→ 0

(but Yt still observed in discrete time.)

Intractable dynamics: We can simulate from Xt |Xt−1, but we
can’t compute pt(xt |xt−1); see also compartmental models in
Epidemiology.
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State-space models with an intractable or degenerate
observation process

We have seen models such that Xt |Xt−1 is intractable; Yt |Xt may
be intractable as well. Let

X ′
t = (Xt , Yt), Y ′

t = Yt + Vt , Vt ∼ N (0, σ2)

and use {(X ′
t , Y ′

t )} as an approximation of {(Xt , Yt)}.

⇒ Connection with ABC (likelihood-free inference).
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Finite state-space models (aka hidden Markov models)
X = {1, . . . , K}, uses in e.g.

speech processing; Xt is a word, Yt is an acoustic measurement
(possibly the earliest application of HMMs). Note K is quite
large.

time-series modelling to deal with heterogenity (e.g. in
medecine, Xt is state of patient)

rediscovered in Economics as Markov-switching models; there
Xt is the state of the Economy (recession, growth), and Yt is
some economic indicator (e.g. GDP) which follows an ARMA
process (with parameters that depend on Xt)

also related: change-point models

Note: Not of direct interest to us, as sequential analysis may be
performed exactly.
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Section 3

Sequential analysis of state-space models
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Definition

The phrase state-space models refers not only to its definition (in
terms of {Xt} and {Yt}) but also to a particular inferential
scenario: {Yt} is observed (data denoted y0, . . .), {Xt} is not, and
one wishes to recover the Xt ’s given the Yt ’s, often sequentially
(over time).
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Filtering, prediction, smoothing

Conditional distributions of interest (at every time t)

Filtering: Xt |Y0:t

Prediction: Xt |Y0:t−1

data prediction: Yt |Y0:t−1

fixed-lag smoothing: Xt−h:t |Y0:t for h ≥ 1

complete smoothing: X0:t |Y0:t

likelihood factor: density of Yt |Y0:t−1 (so as to compute the
full likelihood)
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Parameter estimation

All these tasks are usually performed for a fixed θ (assuming the
model depends on some parameter θ). To deal additionally with
parameter uncertainty, we could adopt a Bayesian approach, and
consider e.g. the law of (θ, Xt) given Y0:t (for filtering). But this is
often more involved.
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Formal notations

{Xt} is a Markov process with initial law P0(dx0), and Markov
kernel Pt(xt−1, dxt).

{Yt} has conditional distribution Ft(xt , dyt), which admits
probability density ft(yt |xt) (with respect to common
dominating measure ν(dyt)).

when needed, dependence on θ will be made explicit as follows:
Pθ

t (xt−1, dxt), f θ
t (yt |xt), etc.
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Bayesian sequential estimation

For a Bayesian model, with parameter θ, data Y0, . . . , Yt , . . . (no
latent variables), we would like to approximate recursively
the posterior pt(θ|y0:t). Could we treat this as a filtering problem,
where

Xt = Θ

is a constant process?
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Tempering

We wish to simulate from (or compute the normalising constant of):

π(dθ) ∝ µ(dθ) exp{−V (θ)}

To do so, we introduce a tempering sequence:

Pt(dθ) ∝ µ(dθ) exp{−λtV (θ)}

where 0 = λ0 < . . . < λT = 1, and use SMC to target recursively
P0, P1, . . . .
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Plot of tempering sequence
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Figure 1: From a Gaussian to a mixture of two Gaussians
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Fundamental question

In all these applications, how are we going to set the Markov kernels
Mt to simulate the particles?

Hint: use MCMC.
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Importance sampling
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Importance sampling
Feynman-Kac

Resampling

Basic identity

ˆ

X
φ(x)q(x)dx =

ˆ

X
φ(x) q(x)

m(x)m(x)dx

Warning: valid only if m(x) = 0 ⇒ q(x) = 0.

Normalised IS estimator:

1
N

N∑

n=1
w(Xn)φ(Xn)

where Xn ∼ m, w(x) = q(x)/m(x).
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Resampling

Auto-normalised importance sampling
If m, q may be computed only up to constant, i.e. q(x) = qu(x)/Zq,
m(x) = mu(x)/Zm, where Zq, Zm are intractable, consider instead:

ˆ

X
φ(x)q(x) dx =

´

X φ(x) q(x)
m(x)m(x) dx

´

X
q(x)
m(x)m(x) dx

=
´

X φ(x) qu(x)
mu(x)m(x) dx

´

X
qu(x)
mu(x)m(x) dx

which suggests the following, based on w(x) = qu(x)/mu(x):

N∑

n=1
W nφ(Xn), W n = w(Xn)

∑N
m=1 w(Xm)

.
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Importance sampling
Feynman-Kac

Resampling

Change of measure

In a more general setting, the proposal and the target may be
probability measures M(dx), Q(dx), and provided that M
dominates Q, we way reweight according to a function proportional
to the Radon-Nykodim derivative.

This is equivalent to applying a change of measure:

Q(dx) = 1
LM(dx)w(x)

where L = M(w) ∈ (0, ∞).
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probability measures M(dx), Q(dx), and provided that M
dominates Q, we way reweight according to a function proportional
to the Radon-Nykodim derivative.

This is equivalent to applying a change of measure:

Q(dx) = 1
LM(dx)w(x)

where L = M(w) ∈ (0, ∞).

nicolas.chopin@ensae.fr Laying out the foundations: importance sampling, resampling, Feynman-Kac



Importance sampling
Feynman-Kac

Resampling

Approximating moments, or approximating a distribution?
Since, for any function φ, we have

N∑

n=1
W nφ(Xn) ≈ Q(φ)

we could say that:
QN(dx) ≈ Q(dx)

where Qn is the following random distribution:

QN(dx) =
N∑

n=1
W nδXn(dx)

(In particular, QN(φ) = ∑N
n=1 W nφ(Xn).)
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ESS (Effective sample size)

A popular criterion:

ESS = 1
∑N

n=1(W n)2 =

(∑N
n=1 w(Xn)

)2

∑N
n=1 w(Xn)2

which has several justifications:

ESS ∈ [1, N].

If w(x) = 1A(x), ESS is number of non-zero weights.

N/ESS converges to the chi-square (pseudo-)distance of q
relative to m:

´

X m(q/m − 1)2.
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Curse of dimensionality in importance sampling

Now assume that both m and q are densities of IID variables
X0, . . . , XT ; then

q(x)
m(x) =

T∏

t=0

q1(xt)
m1(xt)

and the variance of the weights is of the form rT+1 − 1, with r ≥ 1.

IID scenario not completely fictitious.
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Feynman-Kac structure

Consider the following generic class of distributions: for each t ≥ 0:

Mt(dx0:t) is the distribution of a Markov process {Xt}; with
density:

= m0(x0)m1(x1|x0) . . . mt(xt |xt−1)

Qt(dx0:t) is the distribution that corresponds to the following
change of measure, that is the distribution with density

= 1
Lt

m0(x0)m1(x1|x0) . . . mt(xt |xt−1)
{ t∏

s=0
Gs(xs−1, xs)

}
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How to approximate the Qt ’s?

Importance sampling? Curse of dimensionality.

However, if we are only interested in certain marginal distributions
of the Qt , we might be able to express our calculations in a much
smaller dimension. This is the key observation.
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Forward recursion
Suppose we have computed the marginal density qt−1(xt−1) (of
variable Xt−1 with respect to Qt−1). Then:

1 Extend:

qt−1(xt−1, xt) = qt−1(xt−1)mt(xt |xt−1).

2 Embrace (the next potential function):

qt(xt−1, xt) ∝ qt−1(xt−1, xt)Gt(xt−1, xt)

3 Extinguish (marginalize out Xt−1)

qt(xt) =
ˆ

X
qt(xt−1, xt)dxt−1
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Why do we care?

Let’s go back to state-space models. The smooting distribution at
time t is the distribution of X0:t given Y0:t = y0:t , and has the
expression:

∝ p0(x0)
t∏

s=1
pt(xt |xt−1)

t∏

s=0
ft(yt |xt)

hence, the same structure as Qt(dx0:t) provided we take:

mt(xt |xt−1) = pt(xt |xt−1)

Gt(xt−1, xt) = ft(yt |xt)

In particular, the forward recursion may be used to compute
recursively the filtering distributions.

nicolas.chopin@ensae.fr Laying out the foundations: importance sampling, resampling, Feynman-Kac



Importance sampling
Feynman-Kac

Resampling

Why do we care?

Let’s go back to state-space models. The smooting distribution at
time t is the distribution of X0:t given Y0:t = y0:t , and has the
expression:

∝ p0(x0)
t∏

s=1
pt(xt |xt−1)

t∏

s=0
ft(yt |xt)

hence, the same structure as Qt(dx0:t) provided we take:

mt(xt |xt−1) = pt(xt |xt−1)

Gt(xt−1, xt) = ft(yt |xt)

In particular, the forward recursion may be used to compute
recursively the filtering distributions.

nicolas.chopin@ensae.fr Laying out the foundations: importance sampling, resampling, Feynman-Kac



Importance sampling
Feynman-Kac

Resampling

Practical implementations of the forward recursions

finite state-space: replace integrals by sums, exact calculations,
complexity O(K 2) per time step (Baum-Petrie);

linear-Gaussian state-space models: propagating mean/variance
through the Kalman filter;

other state-space models: importance sampling and resampling
⇒ particle filters.
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Motivation

QN
0 (dx0) =

N∑

n=1
W n

0 δXn
0
, Xn ∼ M0, W n

0 = w0(Xn
0 )

∑N
m=1 w0(Xm

0 )
,

and now interested in

(Q0M1)(dx0:1) = Q0(dx0)M1(x0, dx1).

Two solutions:
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First solution

Extend Xn
1 ∼ M1(Xn

0 , dx1).

This ignores the intermediate approx QN
0 (dx0).
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Second solution: resampling

QN
0 (dx0)M1(x0, dx1) =

N∑

n=1
W n

0 M1(Xn
0 , dx1)

and now we sample from this approximation:

1
N

N∑

n=1
δX̃n

0:1
, where X̃n

0:1 ∼ QN
0 (dx0)M1(x0, dx1).

One way to obtain such samples is to do:

X̃n
0:1 = (XAn

1
0 , Xn

1 ), A1:N
1 ∼ M(W 1:N

0 ), Xn
1 ∼ M1(XAn

1
0 , dx1)

Why resample??
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Toy example

X = R, M0 is N (0, 1), w0(x) = 1(|x | > τ); thus Q0 is a
truncated Gaussian distribution

M1(x0, dx1) so that X1 = ρX0 +
√

1 − ρ2U, with U ∼ N(0, 1)

φ(x1) = x1; note that (Q0M1)(φ) = 0

φ̂IS =
N∑

n=1
W n

0 Xn
1 , (Xn

0 , Xn
1 ) ∼ M0M1

φ̂IR = N−1
N∑

n=1
Xn

1 , Xn
1 ∼ QN

0 M1
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No resampling
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Figure 1: image
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With resampling
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Figure 2: image

Assume that, among the N particles Xn
0 , k have a non-zero weight,

then

var[φ̂IS] ≈ ρ2C(τ)
k + 1 − ρ2

k

var[φ̂IR] ≈ ρ2C ′(τ)
k + 1 − ρ2

N
In words:

IS: only k particles are "alive".

IR: all N particles are alive, but they are correlated.

if ρ not too large, IR beats IS.

If τ gets larger and larger, relative performance of IS vs IR
deteriorates quickly. ⇒ Resampling is the safe option.

nicolas.chopin@ensae.fr Laying out the foundations: importance sampling, resampling, Feynman-Kac



Importance sampling
Feynman-Kac

Resampling

Bottom line

Resampling sacrifices the past to save the present.
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Resampling adds noise
Resampling amounts to replacing

QN(dx) =
N∑

n=1
W nδXn(dx)

with
1
N

N∑

n=1
OnδXn(dx)

where On is the number of off-springs of particle n. Note On is
random, takes values in {1, . . . , N}, and is such that

E[On] = NW n

(Unbiasedness property of resampling)
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Resampling: drawbacks?

Assume that W n ≈ 1/N (weights are nearly constant). Then

On ≈ Binomial(N, 1/N)

and in particular

P(On = 0) = (1 − 1
N )N ≈ e−1 ≈ 0.37

which seems quite wasteful.

Solutions:

Resample only when ESS is low.

Use better (=less noisy) resampling schemes.
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Inverse CDF
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Figure 1: CDF F (x) =
∑N

n=1 W n
t 1{n ≤ x}

nicolas.chopin@ensae.fr How to resample



Multinomial resampling
Alternative resampling schemes

inverse CDF algorithm
In the resampling step, we must simulate N times from M(W 1:N

t ),
the multinomial distribution that generates label n with probability
W n

t .

Inverse transform method: generate N uniform variates Um,
m ∈ 1 : N, and set Am

t according to:

Cn−1 ≤ Um ≤ Cn ⇔ Am
t = n

where the Cn’s are the cumulative weights:

C0 = 0, Cn = Cn−1 + W n
t .

This suggests resampling costs O(N2); however, if we are given
uniforms that are already sorted, U(1) < . . . < U(N), then only 2N
comparisons need to be performed.
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Resampling based on sorted uniforms
Algorithm 1: Inverse CDF (finite distribution)
Input: W 1:N , and 0 < U(1) < . . . < U(N) < 1.
Output: A1:N (N indices in 1 : N).

Function icdf(W 1:N, U(1:N)):
s ←W 1, m← 1
for n = 1 to N do

while s < U(n) do
m← m + 1
s ← s + W m

An ← m
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How to generate sorted uniforms

Generate N uniforms, then sort: O(N log N) complexity (not
so bad).

O(N) complexity by using properties of the Poisson process:
see next slide.
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Uniform spacings algorithm
Algorithm 2: Uniform spacings
Input: Integer N.
Output: Ordered sequence 0 < U(1) < . . . < U(N) < 1.

Function uniform_spacings(N):
S0 ← 0
for n = 1 to (N + 1) do

En ∼ E(1)
Sn ← Sn−1 + En

for n = 1 to N do
U(n) ← Sn/SN+1
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Motivation for alternative resampling schemes
We motivated resampling as a way to sample the ancestor Xn

t−1
from the joint distribution:

N∑

n=1
W nδXn

0
(dx0)M1(Xn

0 , dx1)

Now imagine W n
t−1 = 1/N for all n. The probability of never

selecting ancestor Xn
t−1 is (1− 1/N)N ≈ exp(−1) ≈ 0.37. Seems

quite wasteful.

Let On = ∑N
m=1 1{Am = n} (number of offsprings). We would like

to derive resampling schemes such that

E[On] = NW n

while having lower variance than multinomial resampling.
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Residual resampling

Let frac(x) = x − ⌊x⌋, and take

On = ⌊NW n⌋+ Õn

with Õn taking values in Z+, and such that E[Õn] = frac(NW n).

To generate the Õn, use multinomial resampling, based on weights
rn = frac(NW n)/R, with R = ∑N

n=1 frac(NW n).
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Residual resampling: the algorithm

Input: normalised weights W 1:N

Output: A1:N ∈ 1 : N

(a) Compute rn = frac(NW n) (for each n ∈ 1 : N) and
R = ∑N

n=1 rn.

(b) Construct A1:(N−R) as a vector of size (N − R) that
contains ⌊NW n⌋ copies of value n for each n ∈ 1 : N.

(c) Sample AN−R+1:N ∼M(r1:N/R) using multinomial
resampling.
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Stratified and systematic resampling

We defined multinomial resampling as some operation involving N
sorted IID uniforms U(n). Taking instead

U(n) ∼ U
(n − 1

N ,
n
N

)

gives stratified resampling. Reducing randomness further, taking

U(n) = (n − 1 + U)/N

(based on a single uniform U ∼ U(0, 1)) leads to systematic
resampling.
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Which resampling scheme to use in practice?

systematic resampling is pretty popular: easy to implement,
fast, seems to "work well".

Recent theoretical study suggests stratified resampling has
better properties.

In practice, what matters most is to avoid multinomial
resampling.
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Objectives

introduce a generic PF algorithm for a given
Feynman-Kac model {(Mt , Gt)}T

t=0

discuss the different algorithms one may obtain for a given
state-space model, by using different Feynman-Kac formalisms.

give more details on the implementation, complexity, and so on
of the algorithm.
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Input

A Feynman-Kac model {(Mt , Gt)}T
t=0 such that:

the weight function Gt may be evaluated pointwise (for all t);

it is possible to simulate from M0(dx0) and from Mt(xt−1, dxt)
(for any xt−1 and t)

The number of particles N
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Structure

Algorithm 1: Basic PF algorithm

At time 0:
(a) Generate Xn

0 ∼ M0(dx0).
(b) Compute wn

0 = G0(Xn
0 ), and W n

0 = wn
0 /
∑N

m=1 wm
0 .

Recursively, for t = 1, . . . , T :
(a) Generate ancestor variables An

t ∼ M(W 1:N
t−1).

(b) Generate Xn
t ∼ Mt(XAn

t
t−1, dxt).

(c) Compute wn
t = Gt(XAn

t
t−1, Xn

t ), and
W n

t = wn
t /
∑N

m=1 wm
t .
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Output

the algorithm delivers the following approximations at each time t:

1
N

N∑

n=1
δXn

t approximates Qt−1(dxt)

QN
t (dxt) =

N∑

n=1
W n

t δXn
t approximates Qt(dxt)

LN
t =

t∏

s=0

(
1
N

N∑

n=1
wn

t

)
approximates Lt
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Some comments

by approximates, we mean: for any test function φ, the
quantity

QN
t (φ) =

N∑

n=1
W n

t φ(Xn
t )

converges to Qt(φ) as N → +∞ (at the standard Monte Carlo
rate OP(N−1/2)).

complexity is O(N) per time step.
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Principle

We now consider a given state-space model:

with initial law P0(dx0) and Markov kernel Pt(xt−1, dxt) for
{Xt};

with conditional probability density ft(yt |xt) for Yt |Xt

and discuss how the choice of a particular Feynman-Kac formalism
leads to more or less efficient particle algorithms.
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The bootstrap filter

Bootstrap Feynman-Kac formalism:

Mt(xt−1, dxt) = Pt(xt−1, dxt), Gt(xt−1, xt) = ft(yt |xt)

then Qt is the filtering distribution, Lt is the likelihood of y0:t , and
so on.

The resulting algorithm is called the bootstrap filter, and is
particularly simple to interpret: we sample particles from Markov
transition Pt(xt−1, dxt), and we reweight particles according to how
compatible they are with the data.
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The bootstrap filter: algorithm

All operations to be performed for all n ∈ 1 : N.

At time 0:

(a) Generate Xn
0 ∼ P0(dx0).

(b) Compute wn
0 = f0(y0|Xn

0 ) and W n
0 = wn

0 /
∑N

m=1 wm
0 .

Recursively, for t = 1, . . . , T :

(a) Generate ancestor variables An
t ∈ 1 : N independently

from M(W 1:N
t−1).

(b) Generate Xn
t ∼ Pt(XAn

t
t−1, dxt).

(c) Compute wn
t = ft(yt |Xn

t ) and W n
t = wn

t /
∑N

m=1 wm
t .
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The bootstrap filter: output

1
N

N∑

n=1
φ(Xn

t ) approximates E[φ(Xt)|Y0:t−1 = y0:t−1]

N∑

n=1
W n

t φ(Xn
t ) approximates E[φ(Xt)|Y0:t = y0:t ]

LN
t =

t∏

s=0

(
1
N

N∑

n=1
wn

t

)
approximates p(y0:t)
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The bootstrap filter: pros and cons

Pros:

particularly simple

does not require to compute the density Xt |Xt−1: we can apply
it to models with intractable dynamics

Cons:

We simulate particles blindly: if Yt |Xt is very informative, few
particles will get a non-negligible weight.
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The guided PF
Guided Feynman-Kac formalism: Mt is a user-chosen proposal
kernel such that Mt(xt−1, dxt) dominates Pt(xt−1, dxt), and

Gt(xt−1, xt) = ft(yt |xt)Pt(xt−1, dxt)
Mt(xt−1, dxt)

(1)

= ft(yt |xt)pt(xt |xt−1)
mt(xt |xt−1)

(assuming in the second line that both kernels admit a density wrt a
common measure). We still have that Qt(dxt) is the filtering
distribution, and Lt is the likelihood.

We call the resulting algorithm the guided particle filter, as in
practice we would like to choose Mt so as to guide particles to
regions of high likelihood.
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The guided PF: choice of Mt (local optimality)

Suppose that (Gs , Ms) have been chosen to satisfy (1) for s ≤ t − 1.
Among all pairs (Mt , Gt) that satisfy (1), the Markov kernel

Mopt
t (xt−1, dxt) ∝ ft(yt |xt)Pt(xt−1, dxt)

minimises the variance of the weights, Var
[
Gt(XAn

t
t−1, Xn

t )
]
.
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Interpretation and discussion of this result

Mopt
t is simply the law of Xt given Xt−1 and Yt . In a sense it

is the perfect compromise between the information brought by
Pt(xt−1, dxt) and by ft(yt |xt).

In most practical cases, Mopt
t is not tractable, hence this result

is mostly indicative (on how to choose Mt).

Note also that the local optimality criterion is debatable. For
instance, we do not consider the effect of future datapoints.
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First example: Gaussian / Gaussian

Assume:

Xt |Xt−1 = xt−1 ∼ N
(
h(xt−1), σ2

X
)

Yt |Xt = xt ∼ N(xt , σ2
Y )

Then

Xt |Xt−1 = xt−1, Yt = yt ∼ N
(

v ×
{

h(xt−1)
σ2

X
+ yt

σ2
Y

}
, v
)

with 1
v = 1

σ2
X

+ 1
σ2

Y
.

Useful e.g. for Ricker Model in Ecology (non-linear h).
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Second example: stochastic volatility

There, the log-density of Xt |Xt−1, Yt is (up to a constant):

− 1
2σ2 {xt − µ − ϕ(xt−1 − µ)}2 − xt

2 − e−xt

2 y2
t

We can use ex−x0 ≈ 1 + (x − x0) + (x − x0)2/2 to get a Gaussian
approximation.
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Third example: bearings-only tracking

In that case, Pt(xt−1, dxt) imposes deterministic constraints:

Xt(k) = Xt−1(k) + Xt−1(k + 2), k = 1, 2

We can choose a Mt that imposes the same constraints. However,
in this case, we find that

Mopt
t (xt−1, dxt) = Pt(xt−1, dxt).

Discuss.
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Guided particle filter pros and cons

Pro:

may work much better that bootstrap filter when Yt |Xt is
informative (provided we are able to derive a good proposal).

Cons:

requires to be able to compute density pt(xt |xt−1).

sometimes local optimality criterion is not so sound.
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The auxiliary particle filter

In the auxiliary Feynman-Kac formalism, an extra degree of freedom
is gained by introducing auxiliary function ηt , and set:

G0(x0) = f0(y0|x0) P0(dx0)
M0(dx0)η0(x0),

Gt(xt−1, xt) = ft(yt |xt)
Pt(xt−1, dxt)
Mt(xt−1, dxt)

ηt(xt)
ηt−1(xt−1) .

so that
Qt(dx0:t) ∝ P(dx0:t |Y0:t = y0:t)ηt(xt)

and we recover the filtering distribution by reweighting by 1/ηt .

Idea: choose ηt so that Gt is as constant as possible.
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Output of APF

Let w̃n
t := wn

t /ηt(Xn
t ), W̃ n

t := w̃n
t /
∑N

m=1 w̃m
t , then

1
∑N

m=1
W̃ m

t
f (yt |Xm

t )

N∑

n=1

W̃ n
t

ft(yt |Xn
t )φ(Xn

t ) approx. E[φ(Xt)|Y0:t−1 = y0:t−1]

N∑

n=1
W̃ n

t φ(Xn
t ) approx. E[φ(Xt)|Y0:t = y0:t ]

LN
t × N−1

N∑

n=1
w̃n

t approx. p(y0:t)
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Local optimality for Mt and ηt

For a given state-space model, suppose that (Gs , Ms) have been
chosen to satisfy (1) for s ≤ t − 2, and Mt−1 has also been chosen.
Among all pairs (Mt , Gt) that satisfy (1) and functions ηt−1, the
Markov kernel

Mopt
t (xt−1, dxt) = ft(yt |xt)

´

X f (yt |x ′) Pt(xt−1, dx ′)Pt(xt−1, dxt)

and the function

ηopt
t−1(xt−1) =

ˆ

X
f (yt |x ′) Pt(xt−1, dx ′)

minimise Var
[
Gt(XAn

t
t−1, Xn

t )/ηt(Xn
t )
]
.
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Interpretation and discussion

We find again that the optimal proposal is the law of Xt given
Xt−1 and Yt . In addition, the optimal auxiliary function is the
probability density of Yt given Xt−1.
For this ideal algorithm, we would have

Gt(xt−1, xt) = ηopt
t (xt);

the density of Yt+1 given Xt = xt ; not constant, but intuitively
less variable than ft(yt |xt) (as in the bootstrap filter).
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Example: stochastic volatility

We use the same ideas as for the guided PF: Taylor expansion of
log-density, then we integrate wrt xt .
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APF pros and cons

Pros:

usually gives some extra performance.

Cons:

a bit difficult to interpret and use;

they are some (contrived) examples where the auxiliary particle
filter actually performs worse than the bootstrap filter.
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Note on the generality of APF

From the previous descriptions, we see that:

the guided PF is a particular instance of the auxiliary particle
filter (take ηt = 1);
the bootstrap filter is a particular instance of the guided
PF(take Mt = Pt).

This is why some recent papers focus on the APF.
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Which resampling to use in practice?

Systematic resampling is fast, easy to implement, and seems to
work best; but no supporting theory.
We do have some theoretical results regarding the fact that
multinomial resampling is dominated by most other resampling
schemes. (So don’t use it!)
On the other hand, multinomial resampling is easier to study
formally (because again it is based on IID sampling).
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When to resample?
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Resampling or not resampling, that is the question

For the moment, we resample every time. When we introduced
resampling, we explained that the decision to resample was based on
a trade-off: adding noise at time t − 1, while hopefully reducing
noise at time t (assuming that {Xt} forgets its past).

We do know that never resample would be a bad idea: consider
Mt(xt−1, dxt) defined such that the Xt are IID N (0, 1),
Gt(xt) = 1(xt > 0). (More generally, recall the curse of
dimensionality of importance sampling.)

nicolas.chopin@ensae.fr Particle filtering



Objectives
The algorithm

Particle algorithms for a given state-space model
When to resample?

Numerical experiments

Resampling or not resampling, that is the question

For the moment, we resample every time. When we introduced
resampling, we explained that the decision to resample was based on
a trade-off: adding noise at time t − 1, while hopefully reducing
noise at time t (assuming that {Xt} forgets its past).

We do know that never resample would be a bad idea: consider
Mt(xt−1, dxt) defined such that the Xt are IID N (0, 1),
Gt(xt) = 1(xt > 0). (More generally, recall the curse of
dimensionality of importance sampling.)

nicolas.chopin@ensae.fr Particle filtering



Objectives
The algorithm

Particle algorithms for a given state-space model
When to resample?

Numerical experiments

The ESS recipe

Trigger the resampling step whenever the variability of the weights
is too large, as measured by e.g. the ESS (effective sample size):

ESS(W 1:N
t ) := 1

∑N
n=1(W n

t )2 = {∑N
n=1 wt(Xn)}2

∑N
n=1 wt(Xn)2 .

Recall that ESS(W 1:N
t ) ∈ [1, N], and that if k weights equal one,

and N − k weights equal zero, then ESS(W 1:N
t ) = k.
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PF with adaptive resampling
(Same operations at t = 0.)

Recursively, for t = 1, . . . , T :

(a) If ESS(W 1:N
t−1) < γN

generate ancestor variables A1:N
t from resampling

distribution RS(W 1:N
t−1), and set Ŵ n

t−1 = 1/N;

Else (no resampling)

set An
t = n and Ŵ n

t−1 = W n
t−1

(b) Generate Xn
t ∼ Mt(XAn

t
t−1, dxt).

(c) Compute wn
t = (NŴ n

t−1) × Gt(XAn
t

t−1, Xn
t ),

LN
t = LN

t−1{N−1∑N
n=1 wn

t }, W n
t = wn

t /
∑N

m=1 wm
t .
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Numerical experiments

nicolas.chopin@ensae.fr Particle filtering



Objectives
The algorithm

Particle algorithms for a given state-space model
When to resample?

Numerical experiments

Linear Gaussian example

Xt = ρXt−1 + σX Ut

Yt = Xt + σY Vt

with ρ = 0.9, σX = 1, σY = 0.2.

We can implement the perfect guided filter and the perfect APF.
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Stochastic volatility
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Objective

transform/extend particle filtering algorithms so as to approximate
the smoothing distribution Pt(dx0:t |Y0:t = y0:t) for a given
state-space model.
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Distinctions

on-line vs off-line smoothing: recursively, at each time t; or
only at some final time T . . . .

fixed lag vs complete smoothing: recover the law of Xt−h:t
versus the law of the complete trajectory X0:t (in both cases,
given the data y0:t .

class of test functions? some algorithms will apply only to
additive functions.
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An important motivation

Assuming densities for process {Xt}, the score can be expressed as
the smoothing expectation of an additive function:

∂

∂θ
log pθT (y0:T ) = Eθ [φT (X0:T )]|Y0:T = y0:T ]

with

φT (x0:T ) = ∂

∂θ

{
log pθ0(x0) +

T∑

t=1
log pθt (xt |xt−1) +

T∑

t=0
log f θt (yt |xt)

}
.
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Important requirement

Most smoothing algorithms will require the Markov kernel
Pt(xt−1, dxt)

1 to admit a probability density pt(xt |xt−1) (with respect to a
fixed measure)

2 such that this PDF is computable for any xt−1, xt .
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Three classes of algorithms

1 forward-only (on-line) smoothing

2 Backward sampling (a.k.a. FFBS for forward filtering,
backward sampling; off-line)

3 Two-filter smoothing (off-line)
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Forward-only smoothing
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O(N) forward-only smoothing

Simplest approach: we carry forward Xt−h:t (fixed-lag), or X0:t
within our particle filtering algorithm.

Pros: simple, complexity is O(N).

Con: degeneracy.
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Degeneracy

0 200 400 600 800 1000
t

0

200

400

600

800

1000
genealogy (N=1000)

Figure 1: Genealogy of a single run of the bootstrap filter for model:
Yt |Xt ∼ Poisson(eXt ), Xt |Xt−1 ∼ N(µ+ ρ(Xt−1 − µ), σ2).
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O(N2) forward-only smoothing for additive functions
For φt(x0:t) = ψ0(x0) + ∑t

s=1 ψs(xs−1, xs) we have:

Proposition

For t ≥ 0, let

Φt(xt) := E[φt(X0:t)|Xt = xt ,Y0:t = y0:t ],

then
E[φt(X0:t)|Y0:t = y0:t ] = E[Φt(Xt)|Y0:t = y0:t ]

and the Φt ’s may be computed recursively as: Φ0(x0) = ψ0(x0),

Φt(xt) = E [Φt−1(Xt−1) + ψt(Xt−1, xt)|Xt = xt ,Y0:t−1 = y0:t−1]

for t>0.
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O(N2) forward-only smoothing: algorithm
Algorithm 1: O(N2) on-line smoothing (additive functions)

At iteration t ∈ 0 : T of a particle filtering algorithm:
for n = 1 to N do

if t = 0 then
Φn

0(Xn
0 )← ψ0(Xn

0 )

else
Φn

t (Xn
t )←∑N

m=1 W m
t−1pt(Xn

t |Xm
t−1){ΦN

t−1(Xm
t−1)+ψt(Xm

t−1,Xn
t )}∑N

m=1 W m
t−1pt(Xn

t |Xm
t−1)

return ∑N
n=1 W n

t Φ
N
t (Xn

t ) (as an approximation of
E[φt(X0:t)|Y0:t = y0:t ])
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Numerical illustration
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Figure 2: Smoothing expectation vs time, Same model, function φt is
score wrt σ2.
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Section 3

Backward sampling

nicolas.chopin@ensae.fr Particle smoothing



Introduction
Forward-only smoothing

Backward sampling
Two-filter smoothing

Conclusion

Principle

Recall the backward decomposition:

PT (dx0:T |Y0:T = y0:T ) = PT (dxT |Y0:T = y0:T )
T−1∏

t=0

←−P t|t(xt+1,dxt)

where ←−P t|t(xt+1, dxt) ∝ pt+1(xt+1|xt)P(dxt |Y0:t = y0:t)

Idea: plug particle approximation:

N∑

n=1
W n

t δXn
t ≈ Pt(dxt |y0:t).
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Smoothing skeleton

PN
T (dx0:T |Y0:T = y0:T ) :=

{ N∑

n=1
W n

T δXn
T

(dxT )
} T−1∏

t=0

←−P N
t|T (xt+1, dxt)

with
←−P N

t|T (xt+1, dxt) ∝
N∑

n=1
W N

t pt+1(xt+1|Xn
t )δXn

t .

The skeleton is a discrete distribution, with support of size NT+1.
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Sampling from the skeleton
Algorithm 2: FFBS
Input: Output of a particle filter: particles X 1:N

0 , . . . ,X 1:N
T ,

weights W 1:N
0 , . . . ,W 1:N

T .
Output: trajectory (XB0

0 , . . . ,XBT
T ).

BT ∼M(W 1:N
T )

for t = (T − 1) to 0 do
ŵn

t ←W n
t pt+1(XBt+1

t+1 |Xn
t ) and Ŵ n

t = ŵn
t /

∑N
m=1 ŵm

t

for n = 1, . . . ,N
Bt ∼M(Ŵ 1:N

t )

nicolas.chopin@ensae.fr Particle smoothing



Introduction
Forward-only smoothing

Backward sampling
Two-filter smoothing

Conclusion

Notes

cost of simulating one trajectory is O(TN).

In practice, we sample M times from the skeleton, and
compute the following estimates

1
M

M∑

m=1
φ(X̃m

0:T ) ≈ PN
T (φ(X0:T )|Y0:T = y0:T )

≈ E[φ(X0:T )|Y0:T = y0:T ]

Often, people take M = N, so O(N2) complexity.
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FFBS-reject

If we know some constant Ct such that pt(xt |xt−1) ≤ Ct , then we
may use rejection to sample the Bn

t ’s: sample Bt ∼M(W 1:N
t ),

accept with probability pt+1(XBt+1
t+1 |XBt

t )/Ct .

It has been claimed that such an approach has O(N) complexity.
However, its running time is random, and may have infinite
expectation or variance (behaves like a mixture of Geometric
distributions).

Also, rejection is hard to implement efficiently in Python/R.
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FFBS-MCMC

Choose randomly one of the existing trajectories:
BT ∼M(W 1:N

T ), Bt ← ABt+1
t+1 (recursively).

Apply a single Metropolis step to this trajectory, with proposal
M(W 1:N

t ) at iteration t.

This leads to an algorithm with deterministic, O(N) complexity;
see Dau & C. (2023, Annals of Statistics) for details.
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Connection between FFBS and O(N2) forward smoothing

The O(N2) forward smoothing algorithm for additive functions φt
we presented before computes exactly the expectation of φt w.r.t.
the skeleton.
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Section 4

Two-filter smoothing
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Two-filter smoothing: basic identity

Recall (FK chapter):

P(Xt ∈ dxt |Y0:T = y0:T ) ∝ pT (yt+1:T |xt)P(Xt ∈ dxt |Y0:t = y0:t).

We can approximate P(Xt ∈ dxt |Y0:t = y0:t) with a forward
particle filter, but what about pT (yt+1:T |xt)?
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Two-filter smoothing: backward recursion

In the FK chapter, we also derived the following recursion (taking
pT (yT+1:T |xT ) = 1):

pT (yt+1:T |xt) =
ˆ

X
ft+1(yt+1|xt+1)pT (yt+2:T |xt+1)Pt+1(xt ,dxt+1) .

which looks suspiciously similar to the forward recursion of
Feynman-Kac models.

Idea: run a backward particle algorithm to recursively approximate
this quantity.
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Information filter

Note that pT (yt+1:T |xt) is not (necessarily) proportional to a PDF.
Hence we introduce some (user-chosen) distribution γt(dxt) dist’
and tracks the sequence

γt|T (dxt) ∝ γt(dxt)pT (yt+1:T |xt).

Problem: how to choose the γt ’s for best performance?
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Two-filter estimate
To approximate the smoothing expectation of function
φt+1(Xt ,Xt+1), plug the two particle approximations in the
two-filter identity:

1
∑N

m,n=1 ω
m,n
t

N∑

m,n=1
ωm,n

t φt+1(←−X m
t+1,Xn

t )

with ωm,n
t = W n

t
←−W m

t /γt(
←−X m

t ), and
N∑

n=1
W n

t δXn
t (dxt) ≈ Pt(dxt |y0:t), forward filter,

N∑

m=1

←−W m
t+1δ←−X m

t+1
(dxt+1) ≈ γt+1|T (dxt+1), backward information filter.
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Complexity

Cost to compute previous estimate is in general O(N2). There
exists a recent method to obtain a O(N) complexity.
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Practical recommendations

Off-line, known transition density: FFBS-MCMC

Off-line, unknown transition density: see Dau & C (2023) for a
coupling approach.

On-line, additive functions: the O(N2) algorithm (expensive).
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Maximum likelihood estimation

Now, the considered state-space model depends on some unknown
parameter θ; dependence on θ is made explicit in the notations.

We’d like to compute:

θ̂T ∈ arg max
θ∈Θ

pθT (y0:T ).
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Specific difficulties

Asymptotic theory (for state-space models) is very technical,
and relies on strong assumptions.

The likelihood function is typically not well-behaved.

The likelihood function (and related quantities) are not
tractable.
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Log-likelihood plot
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Figure 1: log-likelihood function of a stochastic volatility model for
real-data (σ = 0.178).
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Main approaches

Gradient-free optimisation (Nelder-Mead);

Gradient-based optimisation (gradient descent);

the EM algorithm.
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Likelihood estimate

Recall that, in a guided filter

LN
T =

T∏

t=0

(
1
N

N∑

n=1
wn

t

)

is an estimate of the density of Y0:T (i.e. the likelihood).

In fact, this estimate is unbiased, and its variance grows with time.
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Error grows with time
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Figure 2: log-likelihood error versus time (bootstrap filter, N = 100, linear
Gaussian model)
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Common random numbers

A nice trick when dealing with noisy optimisation is to “freeze” the
random numbers for all the evaluations of the noisy target.

Unfortunately, the CRN trick is not very useful in our context: even
with frozen random numbers, a particle estimate is a discontinuous
function of θ. (Discuss.)
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Hürzeler and Künsch

The CRN would apply nicely to a likelihood estimate based on the
following identity:

pθT (y0:T )
pθ0

T (y0:T )
= EPθ0

T

[
pθT (X0:T , y0:T )
pθ0

T (X0:T , y0:T )

∣∣∣∣∣Y0:T = y0:T

]
(1)

where

pθT (x0:T , y0:T ) = pθ0(x0)
T∏

t=1
pθt (xt |xt−1)

t∏

t=0
f θt (yt |xt) .

but note that we are then dealing with a curse of dimensionality. . .
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Applying H&K to a stochastic volatility model
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Figure 3: ESS as a function of σ, for the IS estimate of the previous slide
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Practical recipe

Brute force approach: take N large enough so that the noise of
likelihood estimates become negligible. Then apply the simplex
(Nelder-mead) algorithm.

As always, the algorithm may converge to a local mode,
depending on the starting point.

Seems to work reasonably well when dim(θ) is not too large.
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Gradient descent

Gradient ascent maximises a function h by iterating:

θn = θn−1 + γn∇h(θn−1)

In our case, recall that we may express the gradient of the
log-likelihood as a smoothing expectation (see previous chapter).
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The EM algorithm

nicolas.chopin@ensae.fr Maximum likelihood estimation



Main ideas
Gradient-free optimisation

Gradient-based approaches
The EM algorithm

Conclusion

The EM algorithm

For any model on a pair (X ,Y ) such that we observe only Y , the
EM algorithm iterates:

θn = arg max
θ∈Θ

EPθn−1

[
log pθ(X , y)|Y = y

]

where pθ(x , y) is the joint density of (X ,Y ) (for parameter θ).
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EM algorithm for exponential families

If the joint density belongs to a natural exponential family:

pθ(x , y) = exp{θT s(x , y) − ψ(θ) − ξ(x)}

the EM update takes the following (simpler) form:

∇ψ(θ) = EPθn−1 [s(X , y) | Y = y ] . (2)
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EM algorithm for state-space models

There, X = X0:T , Y = Y0:T , and, assuming again an exponential
family for the joint, the EM update amounts to computing a
smoothing expectation:

θn = (∇ψ)−1
(
EPθn−1 [s(X0:T , y0:T ) | Y0:T = y0:T ]

)
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Conclusion

no clear winner;

most approaches rely on computing smoothing estimates; this
implies in particular that kernel Pθ

t (xt−1,dxt) admits a
tractable density pθt (xt |xt−1).

Maximum likelihood estimation may not be the best way to
assess parameter uncertainty in the context of state-space
models.
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Tractable models

For a standard Bayesian model, defined by (a) prior p(θ), and (b)
likelihood p(y |θ), a standard approach is to use the
Metropolis-Hastings algorithm to sample from the posterior

π(θ) ∝ p(θ)p(y |θ).

Metropolis-Hastings (Gaussian random walk proposal)

From current point θm
1 Sample θ⋆ ∼ N(θm,Σ)

2 With probability 1 ∧ r , take θm+1 = θ⋆, otherwise θm+1 = θm,
where

r =
p(θ⋆)p(y |θ⋆)
p(θm)p(y |θm)

This generates a Markov chain which leaves p(θ|y) invariant.
nicolas.chopin@ensae.fr Particles as auxiliary variables: PMCMC and related algorithms
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Intractable models

This generic approach cannot be applied in the following situations:

1 The likelihood is p(y |θ) = hθ(y)/Z (θ), where Z (θ) is an
intractable normalising constant; e.g. log-linear models,
network models, Ising models.

2 The likelihood p(y |θ) is an intractable integral

p(y |θ) =
ˆ

X
p(y , x |θ) dx .

3 The likelihood is even more complicated, because it corresponds
to some scientific model involving some complicate generative
process (scientific models, ”likelihood-free inference”, ABC).
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General framework

Consider posterior

π(θ, x) ∝ p(θ)p(x |θ)p(y |x , θ)

where typically x is of much larger dimension than θ.
One potential approach to sample from the posterior is Gibbs
sampling: iteratively sample θ|x , y , then x |θ, y . However, there are
many cases where Gibbs is either difficult to implement, or quite
inefficient.
Instead, we would like to sample marginally from

π(θ) ∝ p(θ)p(y |θ), p(y |θ) =
ˆ

X
p(x , y |θ) dx

but again p(y |θ) is intractable...
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Importance sampling

I cannot compute p(y |θ), but I can compute an unbiased estimator
of this quantity:

p̂(y |θ) = 1

N

N∑

n=1

p(xn|θ)p(y |xn, θ)
q(xn)

, x1:N
iid∼ q(x)

using importance sampling.
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The pseudo-marginal approach

GIMH (Beaumont, 2003)

From current point θm
1 Sample θ⋆ ∼ N (θm,Σ)

2 With prob. 1 ∧ r , take θm+1 = θ⋆, otherwise θm+1 = θm, with

r =
p(θ⋆)p̂(y |θ⋆)
p(θm)p̂(y |θm)

Note that p̂(y |θ⋆) is based on independent samples generated at
iteration m.
Question: Is GIMH a non-standard HM sampler w.r.t. standard
target π(θ)?
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Validity of GIMH

Property 1

The following function

π̄(θ, x1:N) =
N∏

n=1

q(xn)
p(θ)p̂(y |θ)

p(y)

is a joint PDF, whose θ-marginal is π(θ) ∝ p(θ)p(y |θ).

Proof: Direct consequence of unbiasedness; fix θ then

ˆ N∏

n=1

q(xn)p(θ)p̂(y |θ) dx1:N = p(θ)E [p̂(y |θ)] = p(θ)p(y |θ)

nicolas.chopin@ensae.fr Particles as auxiliary variables: PMCMC and related algorithms



Background
GIMH

PMCMC
Conditional SMC (Particle Gibbs)

GIMH as a Metropolis sampler

Property 2

GIMH is a Metropolis sampler with respect to joint distribution
π̄(θ, x1:N). The proposal density is N(θ⋆; θm,Σ)

∏N
n=1 q(x

n
⋆ ).

Proof: current point is (θm, x
1:N
m ), proposed point is (θ⋆, x

1:N
⋆ ) and

HM ratio is

r = ������∏N
n=1 q(x

n
⋆ )p(θ⋆)p̂(y |θ⋆)������∏N

n=1 q(x
n
m)

������∏N
n=1 q(x

n
m)p(θm)p̂(y |θm)������∏N

n=1 q(x
n
⋆ )

Thus, GIMH is a standard Metropolis sampler w.r.t. non-standard
(extended) target π̄(θ, x1:N).
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There is more to life than this

Property 3

Extend π̄(θ, x1:N) with k |θ, x1:N ∝ π(θ, xk)/q(xk), then,
the marginal dist. of (θ, xk) is π(θ, x).

Conditional on (θ, xk), xn ∼ q for n ̸= k , independently.

Proof: let

π̄(θ, x1:N , k) =

{
N∏

n=1

q(xn)

}
π(θ, xk)

q(xk)
=




∏

n ̸=k

q(xn)



π(θ, xk)

then clearly the sum w.r.t. k gives π̄(θ, x1:N), while the above
properties hold.
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We can do Gibbs!

One consequence of Property 3 is that we gain the ability to
perform Gibbs, in order to regenerate the N − 1 non-selected points
xn, n ̸= k . More precisely:

1 Sample k ∼ π(k |θ, x1:N) ∝ π(θ, xk)/q(xk)
2 regenerate xn ∼ q, for all n ̸= k .

Could be useful for instance to avoid ”getting stuck”, because say
the current value π̂(θ) is too high.
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Main lessons

We can replace an intractable quantity by an unbiased
estimate, without introducing any approximation.

In fact, we can do more: with Proposition 3, we have obtained
that

1 it is possible to sample from π(θ, x) jointly;
2 it is possible to do a Gibbs step where the N − 1 xn, n ≠ k are

regenerated (useful when GIMH ”get stucks”?)

but careful, it is possible to get it wrong...
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Unbiasedness without an auxiliary variable representation

This time, consider instead a target π(θ) (no x), involving an
intractable denominator; an important application is Bayesian
inference on likelihoods with intractable normalising constants:

π(θ) ∝ p(θ)p(y |θ) = p(θ)
hθ(y)

Z (θ)

Liang & Lin (2010)’s sampler

From current point θm
1 Sample θ⋆ ∼ H(θm, dθ⋆)

2 With prob. 1 ∧ r , take θm+1 = θ⋆, otherwise θm+1 = θm, with

r =
̂(Z (θm)

Z (θ⋆)

)
p(θ⋆)hθ⋆(y)h(θ

m|θ⋆)
p(θm)hθm(y)h(θ⋆|θm)

.
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PMCMC: introduction

PMCMC (Andrieu et al., 2010) is akin to GIMH, except a more
complex proposal mechanism is used: a PF (particle filter).
The same remarks will apply:

Unbiasedness (of the likelihood estimated provided by the PF)
is only an intermediate result for establishing the validity of the
whole approach.

Unbiasedness is not enough to give you intuition on the validity
of e.g. Particle Gibbs.
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Objective

Objectives

Sample from
p(dθ,dx0:T |y0:T )

for a given state-space model.
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Why are these models difficult?

Because the likelihood is intractable

pθT (y0:T ) =

ˆ T∏

t=0

f θt (yt |xt)
T∏

t=1

pθt (xt |xt−1)p
θ
0(x0)
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Feynman-Kac formalism

Taking {Mθ
t ,G

θ
t }t≥0 so that

Mθ
t (xt−1, dxt) is a Markov kernel (for fixed θ), with density

mθ
t (xt |xt−1)

and

G θ
t (xt−1, xt) =

f θt (yt |xt)pθt (xt |xt−1)

mθ
t (xt |xt−1)

we obtain the Feynman-Kac representation associated to a guided
PF that approximates the filtering distribution at every time t.

If we take mθ
t (xt |xt−1) = pθt (xt |xt−1), we recover the bootstrap

filter (which does not require to be able to evaluate pθt (xt |xt−1)
pointwise).
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Particle filters: pseudo-code

All operations to be performed for all n ∈ 1 : N.
At time 0:

(a) Generate X n
0 ∼ Mθ

0 (dx0).

(b) Compute wn
0 = G θ

0 (X
n
0 ), W

n
0 = wn

0 /
∑N

m=1 w
m
0 , and

LN0 = N−1
∑N

n=1 w
n
0 .

Recursively, for t = 1, . . . ,T :

(a) Generate ancestor variables An
t ∈ 1 : N independently

fromM(W 1:N
t−1).

(b) Generate X n
t ∼ Mθ

t (X
An
t

t−1, dxt).

(c) Compute wn
t = G θ

t (xt−1, xt), W
n
t = wn

t /
∑N

m=1 w
m
t ,

and LNt (θ) = LNt−1(θ)× {N−1
∑N

n=1 w
n
t }.

nicolas.chopin@ensae.fr Particles as auxiliary variables: PMCMC and related algorithms



Background
GIMH

PMCMC
Conditional SMC (Particle Gibbs)

Unbiased likelihood estimator

A by-product of PF output is that

LNT (θ) =

(
1

N

N∑

n=1

G θ
0 (X

n
0 )

)
T∏

t=1

(
1

N

N∑

n=1

G θ
t (xt−1, xt)

)

is an unbiased estimator of the likelihood LT (θ) = p(y0:T |θ).
(Not trivial, see e.g Proposition 7.4.1 in Pierre Del Moral’s book.)
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PMCMC

Breakthrough paper of Andrieu et al. (2011), based on the
unbiasedness of the PF estimate of the likelihood.

Marginal PMCMC

From current point θm (and current PF estimate LNT (θm)):

1 Sample θ⋆ ∼ H(θm, dθ⋆)

2 Run a PF so as to obtain LNT (θ⋆), an unbiased estimate of
LT (θ⋆) = p(y0:T |θ⋆).

3 With probability 1 ∧ r , set θm+1 = θ⋆, otherwise θm+1 = θm
with

r =
p(θ⋆)L

N
T (θ⋆)h(θm|θ⋆)

p(θm)LNT (θm)h(θ⋆|θm)
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Validity

Property 1

Let ψT ,θ(dx
1:N
0:T ,da

1:N
1:T ) be the joint dist’ of all the the rv’s

generated by a PF (for fixed θ), then

πT (dθ,dx
1:N
0:T , da

1:N
1:T ) =

p(dθ)

p(y0:T )
ψT ,θ(dx

1:N
0:T , da

1:N
1:T )L

N
T (θ)

is a joint pdf, such that the θ-marginal is p(θ|y0:T )dθ.

Proof: fix θ, and integrate wrt the other variables:
ˆ

πT (·) =
p(θ)

p(y0:T )
E
[
LNT (θ)

]
dθ

=
p(θ)p(y0:T |θ)

p(y0:T )
dθ = p(θ|y0:T )dθ
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More direct proof for T = 1

ψ1,θ(dx
1:N
0:1 ,da

1:N
1 ) =

N∏

n=1

Mθ
0 (dx

n
0 )

{
N∏

n=1

Mθ
1 (x

an1
0 , dx

n
1 )W

an1
0,θda

n
1

}

with W n
0,θ = G θ

0 (x
n
0 )/

∑N
m=1 G

θ
0 (x

m
0 ). So

π1(·) =
p(θ)

p(y0:t)
ψ1,θ(·)

{
1

N

N∑

n=1

G θ
0 (x

n
0 )

}{
1

N

N∑

n=1

G θ
1 (x

an1
0 , x

n
1 )

}

=
p(θ)

N2p(y0:t)

N∑

n=1

G θ
1 (x

an1
0 , x

n
1 )M

θ
1 (x

an1
0 , x

n
1 )

G θ
0 (x

an1
0 )

�������∑N
m=1 G

θ
0 (x

m
0 )��������{

N∑

m=1

G θ
0 (x

m
0 )

}

×Mθ
0 (dx

an1
0 )




∏

i ̸=an1

Mθ
0 (dx

i
0)








∏

i ̸=n

Mθ
1 (x

ai1
0 ,dx

i
1)W

ai1
1 dai1
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Interpretation

π1(dθ,dx
1:N
0:1 ,da

1:N
1 ) =

1

N
×
[
1

N

N∑

n=1

p(dθ,dx
an1
0 ,dx

n
1 |y0:1)

∏

i ̸=an1

Mθ
0 (dx

i
0)




∏

i ̸=n

Mθ
1 (x

ai1
0 ,dx

i
1)W

ai1
0





]

which is a mixture distribution, with probability 1/N that path n
follows p(dθ,dx0:1|y0:1), An

1 is Uniform in 1 : N, and other paths
follows a conditional SMC distribution (the distribution of a particle
filter conditional on one trajectory being fixed). From this
calculation, one easily deduce the unbiasedness property (directly!)
but also properties similar to those of the GIMH.
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Additional properties (similar to GIMH)

Property 2

Marginal PMCMC is a Metropolis sampler with invariant
distribution πT , and proposal distribution h(θ⋆|θ)dθ⋆ψT ,θ⋆(·). (In
particular, it leaves invariant the posterior p(dθ|y0:T ).)

Proof: write the MH ratio, same type of cancellations as for GIMH.
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Additional properties (similar to GIMH)

Property 3

If we extend πT by adding component k ∈ 1 : N with conditional
probability ∝W k

T , then the joint pdf πT (dθ,dx
1:N
0:T , da

1:N
1:T−1,dk) is

such that

(a) (θ,X ⋆
0:T ) ∼ p(dθ,dx0:T |y0:T ) marginally; and

(b) Given (θ,X ⋆
0:T ), the N − 1 remaining trajectories

follow the conditional SMC distribution.

where X ⋆
0:T is the k−th complete trajectory: X ⋆

t = XBt
t for all t,

with BT = k , BT−1 = Ak
T , ... B0 = AB1

1 .
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Outline

1 Background

2 GIMH

3 PMCMC

4 Conditional SMC (Particle Gibbs)
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CSMC

The formalisation of PMCMC offers the possibility to
regenerate the N − 1 trajectories that have not been selected;
this is essentially a Gibbs step, conditional on θ, and the
selected trajectory X ⋆

0:T .

This CSMC step cannot be analysed with the same tools as
marginal PMCMC, as in Andrieu and Vihola (2012).

From now on, we drop θ from the notations.
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Algorithmic description (T = 1)

Assume selected trajectory is X ⋆
0:1 = (X 1

0 ,X
1
1 ); i.e. k = 1, Ak

1 = 1.
At time t = 0:

(a) sample X n
0 ∼ M0(dx0) for n ∈ 2 : N.

(b) Compute weights wn
0 = G0(X

n
0 ) and normalise,

W n
0 = wn

0 /
∑N

m=1 w
m
0 .

At time t = 1:

(a) Sample A2:N
1 M(W 1:N

0 ).

(b) Sample X n
1 ∼ M1(X

An
0

1 ,dx1) for n ∈ 2 : N.

(c) Compute weights wn
1 = G1(X

An
1

0 ,X n
1 ) and normalise,

W n
1 = wn

1 /
∑N

m=1 w
m
1 .

(d) select new trajectory k with probability W k
1 .

then return X̃ ⋆
0:1 = (X

Ak
1

0 ,X k
1 ).
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Some remarks

One may show that the CSMC update does not depend on the
labels of the frozen trajectory. This is why we set these
arbitrarily to (1, . . . , 1). Formally, this means that the CSMC
kernel is such that KN

CSMC : XT → P(XT ).

This remains true for other resampling schemes (than
multinomial); see next two* slides for an example
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Properties of the CSMC kernel

Theorem

Under appropriate conditions, one has, for any ε > 0,

∣∣∣KN
CSMC(φ)(x0:T )− KN

CSMC(φ)(x
′
0:T )

∣∣∣ ≤ ε

for N large enough, and φ : XT → [−1, 1].

This implies uniform ergodicity. Proof based on a coupling
construction.
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Assumptions

Gt is upper bounded, Gt(xt) ≤ gt .

We have
ˆ

M0(dx0)G0(x0) ≥
1

g0
,

ˆ

Mt(xt−1, dxt)Gt(xt) ≥
1

gt

But no assumptions on the kernels Mt .
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Backward sampling

Nick Whiteley (in his RSS discussion of PMCMC) suggested to add
an extra backward step to CSMC, where one tries to modify
(recursively, backward in time) the ancestry of the selected
trajectory.
In our T = 1 example, and for multinomial resampling, this
amounts to draw Ak

1 from

P(Ak
1 = a|k , x1:N0:1 ) ∝W a

0m1(x
k
1 |xa0 )

where m1(x
k
1 |xa0 ) is the PDF at point xk1 of M1(x

a
0 , dx1), then

return x⋆0:1 = (xa0 , x
k
1 ).
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BS for other resampling schemes

More generally, BS amounts to draw ak1 from

P(ak1 = a|k , x1:N1:2 ) ∝ ρ1(W 1:N
1 ; ak1 = a|a−k

1 )m2(x
a
1 , x

k
2 )

where a−k
1 is a1:N1 minus ak1 .

So we need to be able the conditional probability
ρ1(W

1:N
1 ; ak1 = a|a−k

1 ) for alternative resampling schemes.
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Why BS would bring an improvement?

C. and Singh (2014) prove that CSMC+BS dominates CSMC in
efficiency ordering (i.e. asymptotic variance). To do so, they prove
that these two kernels are reversible; see Tierney (1998), Mira &
Geyer (1999).
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Simulations

See the plots in next slide, based on the following simple state-space
model, with θ = (µ, ϕ, σ):

xt − µ = ϕ(xt−1 − µ) + σϵt , ϵt ∼ N(0, 1)

yt |xt ∼ Poisson(ext )
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Update rate of Xt

t
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Left: N = 200, right: N = 20. Solid line: multinomial, Dashed line:
residual; Dotted line: Systematic. Crosses mean BS has been used.
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Conclusion

When the backward step is possible, it should be implemented,
because it improves mixing dramatically. In that case,
multinomial resampling is good enough.

When the backward step cannot be implemented, switching to
systematic resampling helps.
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But what’s the point of PG?

It’s a bit the same discussion as marginal Metropolis (in θ-space)
versus Gibbs:

Gibbs does not work so well when they are strong correlations
(here between θ and X ⋆

0:T );

Metropolis requires a good proposal to work well.

In some cases, combining the two is helpful: in this way, the CSMC
update will refresh the particle system, which may help to get
“unstuck”.
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Example

X0 ∼ N (0, σ2
X ), and

Xt = ρXt−1 + Ut , Ut ∼ N (0, σ2
X )

Yt = Xt + Vt , Vt ∼ N (0, σ2
Y ) ,

Prior for θ = (ρ, σ2
X , σ2

Y ): ρ ∼ U ([−1, 1]), σ2
X , σ2

Y ∼ IG(2, 2).

Data simulated from the model: T + 1 = 100, ρ = 0.9,
σX = 1, σY = 0.2.
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Considered algorithms

Gaussian random walk PMMH (for various values of N);
covariance of proposal is τ I3, for various values of τ .

“ideal” random walk Metropolis (i.e. true likelihood is
computed using Kalman), with same proposal.
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MSJD (mean squared jumping distance) vs acceptance rate
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Figure 1: Mean squared jumping distance versus acceptance rate, for
PMMH with N = 100, and different random walk scales τ ; the value of τ
is printed next to each dot.
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Acceptance rate vs N
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Figure 2: Acceptance rate versus N, for the random walk PMMH
algorithm; dashed line gives the acceptance rate of the ideal sampler.
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ACFs
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Figure 3: ACFs (auto-correlation function) of two components of θ of the
ideal sampler and selected PMMH samplers (based on the bootstrap filter
for N = 100, 300, 500), in the linear Gaussian toy example.
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MSJD vs log-likelihood variance
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Figure 4: Mean squared jumping distance versus log-likelihood variance,
for the PMMH algorithm (N = 100, . . . , 1000). The latter quantity is in
fact the average (over 10 values of θ sampled from the posterior by the
ideal sampler) of the empirical variance of the log-likelihood estimate
generated by by the bootstrap filter for a given N. The dashed line gives
the mean squared jumping distance of the ideal sampler. The value of N is
printed next to selected dots.
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Change prior to σ2
Y ∼ G(1/2, 1/2)
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Figure 5: Marginal posterior distribution of σ2
Y , as estimated by the ideal

sampler (black), and PMMH with N = 100 (grey), for the alternative prior.
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The model

X0 ∼ N(0, 1) (for simplicity) and

Xt = Xt−1 + τ0 − τ1 exp(τ2Xt−1) + Ut , Ut ∼ N(0, σ2
X )

Yt = Xt + Vt , Vt ∼ N(0, σ2
Y )

Prior for θ = (τ0, τ1, τ2, σ2
X , σ2

Y ): τi ∼ N+(0, 1) (a normal
distribution truncated to R+), σ2

X , σ2
Y ∼ IG(2, 1).

Real data.
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Shape of posterior
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Figure 6: Selected pair plots for the output of the Particle Gibbs sampler
(with backward step) in the theta-logistic example.
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Results

PMMH almost impossible to calibrate for good performance here;
instead we obtained good performance from Particle Gibbs.
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Recommendations

If you wish to implement PMMH:

Try to design a PF such the variance of the log-likelihood
estimate is ≪ 1, for θ’s that are representative of the posterior.
For this, you may need to increase N, and/or use a better
proposal (guided filter), and/or use SQMC.

Then calibrate the random walk proposal so as to obtain e.g. a
high value for the MSJD.

Adaptive strategies may really help in this case; alternatively,
consider Particle Gibbs or SMC2.
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Numerical experiments

Two talks in one
1 Overview of SMC samplers (and how/why they may be

overlooked)
2 Proposed improvement: waste-free SMC, joint work with:

Hai-Dang Dau
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SMC: what is it?

SMC = an algorithm that mixes importance sampling and MCMC
techniques so as to approximate a sequence of distributions.

In some problems, you already have a sequence of distributions of
interest.

In other problems, you may have a single distribution of interest,
and you need to design a sequence that ends at the target. (I will
give some recommendations.)
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SMC: what is it?

SMC = an algorithm that mixes importance sampling and MCMC
techniques so as to approximate a sequence of distributions.

In some problems, you already have a sequence of distributions of
interest.

In other problems, you may have a single distribution of interest,
and you need to design a sequence that ends at the target. (I will
give some recommendations.)
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SMC: why?

often only requirement is: being able to compute pointwise the
(un-normalised) target density.

parallelisable;

estimates of the normalising constants;

adaptive (see 2nd part);

competitive (e.g. C. and Ridgway, 2017; Buchholz et al, 2020).
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PAC-Bayesian learning (see Alquier, 2021)
A ML method based on a pseudo-posterior:

π(θ) ∝ µ(θ) exp{−λRn(θ)}
where Rn(θ) is the empirical risk for parameter θ. For instance, for a
classification task:

Rn(θ) =
n∑

i=1
1{Yisθ(Xi) < 0}

and sθ could be e.g. sθ(x) = θT x .

How do we choose λ?

⇒ Consider a sequence of values 0 = λ0 < . . . < λT , use SMC to
approximate the corresponding sequence of PAC-Bayes posteriors
(and do e.g. cross validation).

See also Chernozhukov and Hong (2003), Bissiri et al (2016).
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PAC-Bayesian learning (see Alquier, 2021)
A ML method based on a pseudo-posterior:

π(θ) ∝ µ(θ) exp{−λRn(θ)}
where Rn(θ) is the empirical risk for parameter θ. For instance, for a
classification task:

Rn(θ) =
n∑

i=1
1{Yisθ(Xi) < 0}

and sθ could be e.g. sθ(x) = θT x .

How do we choose λ?

⇒ Consider a sequence of values 0 = λ0 < . . . < λT , use SMC to
approximate the corresponding sequence of PAC-Bayes posteriors
(and do e.g. cross validation).

See also Chernozhukov and Hong (2003), Bissiri et al (2016).
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Sequential Bayesian estimation (and model choice)

Parametric model, prior µ(θ). Data arrive sequentially: Y0, Y1, ....

Consider sequence of posterior distributions:

πt(θ) = 1
p(y0:t)

µ(θ)p(y0:t |θ)

which may be used to infer θ sequentially, and also to perform
model choice, through the marginal likelihood:

p(y0:t) =
∫

µ(θ)p(y0:t |θ)dθ
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ABC (Approximate Bayesian Computation)

Model described only through a simulator: y ∼ pθ(y). ABC
posterior:

πε(θ, y) ∝ µ(θ)pθ(y)1 {d(y , y⋆) ≤ ε}

Use a sequence ε0 > ε1 > . . . > εT .
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What if I don’t have a sequence
Given a target distribution π, and a base distribution µ, one may
interpolate between the two through tempering:

πλ(θ) ∝ µ(θ)1−λπ(θ)λ

= 1
Zλ

µ(θ) exp {−λV (θ)}

where V (θ) := − log{π(θ)/µ(θ)}.

⇒ Introduce the tempering sequence:

πt(θ) = 1
Zλt

µ(θ) exp{−λtV (θ)}

where 0 = λ0 < . . . , λT = 1.
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Pictorial representation

3 2 1 0 1 2 3

0.000

0.002

0.004
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0.008

0.010

0.012

0.014

0.016

Tempering sequence interpolating between N(0, 1) and a mixture of
two Gaussians.
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Two critical points regarding tempering

You can set the λt ’s automatically. Critical for good
performance.

Consider two Gaussian distributions in dimension d . Then:
their χ2−distance is O(ed).

however, I can design T = O(d1/2) intermediate distributions,
such that the χ2−distance between πt and πt+1 is O(1).

Tempering lifts the curse of dimensionality; see next chapter.
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Global optim

To minimise function V , consider again sequence

πt(θ) ∝ µ(θ) exp {−λtV (θ)}

where this time λt → +∞.

Example: variable selection, θ is a binary vector (whether predictor
is included or not), and V (θ) is e.g. BIC).

Connection with genetic programming.
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SMC samplers
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SMC: more than sequential importance sampling
Now that we have a certain sequence (πt) of distribution: we could:

sample θn ∼ π0(θ) = µ(θ) at time 0.

move to target π1 through importance sampling; assign to
particle θn weight:

wn
1 ∝

π1(θn)
π0(θn)

move to target π2 through a second IS step:

wn
2 ∝ wn

1
π2(θn)
π1(θn)

However, this boils down to IS from π0 to πT . Usual weight
degeneracy.
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SMC: resample / move steps

At time t − 1, we have a weighted sample that approximates πt−1:

N∑

n=1
W n

t−1φ(θn
t−1) ≈ πt−1(φ)

where W n
t−1 = wn

t−1/
∑N

m=1 wm
t−1 (normalised weights).

In order to rejuvenate the sample:

resample: draw with replacement from set of N particles,
according to the weights.

move the resampled particles according to a MCMC kernel that
leaves πt−1 invariant.
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SMC sampler algorithm

Operations involving n are performed for n = 1, . . . , N.

for t ← 0 to T do
if t = 0 then

θn
0 ∼ π−1

else
A1:N

t ∼ resample(N, W 1:N
t−1)

θn
t ∼ Mt(θAn

t
t−1, dθt) (Mt leaves invariant πt−1)

wn
t ← πt(θn

t )/πt−1(θn
t )

W n
t ← wn

t /
∑N

m=1 wm
t
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An example of a MCMC kernel: random walk Metropolis

The algorithm (with input: θ):

Generate θp ∼ N(θ, Σ)

With probability α ∧ 1, return θp, otherwise return θ, where

α = π(θp)
π(θ)

defines a Markov kernel that leaves invariant π.

Choice of Σ critical for good performance. If π ≈ N(µ, S),
recommended to take Σ = cS, with c = (2.38)2/d .

Many other types of MCMC (e.g. Gibbs, HMC, NUTS, etc.).
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Practical implementation within a SMC sampler

A default strategy in SMC samplers is use (as the MCMC kernel
that moves the particles at time t) k step of random walk
Metropolis, with

Σ = c × Σ̂

and Σ̂ is the empirical covariance matrix of the weighted particles.

Note how easy it is to properly tune the MCMC kernel.

But: how to choose k?
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Numerical experiment: logistic regression, sonar dataset
For details, see Chap. 16 of C. and Papaspiliopoulos (2020).
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Figure 1: Box-plots over 50 runs of estimate of posterior expectation of
first component, as a function of k (number of MCMC steps)
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Numerical experiment (ii)

10 20 30 40 50 60
number MCMC steps

170

160

150

140

130

120

m
ar

gi
na

l l
ik

el
ih

oo
d

tempering
ibis

Figure 2: Same plot for log marginalising constant
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Numerical experiment (iii)
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Questions / remarks

How do we choose k in practice? (without doing many pilot
runs)

Should we have the same k at all iterations?

If k is large, not using the intermediate states seem wasteful.
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Section 4

Waste-free SMC
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Basic idea

Let M, P two integers such that N = MP.

At iteration t:

resample M particles;

apply P − 1 MCMC steps to each of the M resampled particles;

keep all the intermediate steps ⇒ N particles. No waste.
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Questions

Validity?

how to choose pair (M, P) (for a given N)?
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P fixed, M →∞

In that regime, waste-free SMC is equivalent to a standard SMC
sampler, where the target at time t corresponds to the distribution
of a stationary Markov chain of length P.

Implies that:

algorithm converges (as N →∞, while keeping P fixed)

estimate of normalising constant is unbiased.

However, this regime usually does not lead to best performance.
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M fixed (or grows slowly), P →∞

√
N
(

1
N

N∑

n=1
φ(θn

t )− πt−1(φ)
)
⇒ N

(
0, Ṽt(φ)

)

√
N
( N∑

n=1
W n

t φ(θn
t )− πt(φ)

)
⇒ N (0,Vt(φ))

where
Ṽt(φ) = v∞(Mt−1, φ)
Vt(φ) = Ṽt

(
Ḡt(φ− πtφ)

)
,

and v∞(Mt , φ) is the asymptotic variance of a stationary Markov
chain (ξt) with kernel Mt :

v∞(Mt , φ) = Var (φ(ξ0)) + 2
∞∑

p=1
Cov (φ(ξ0), φ(ξp)) .
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Asymptotic variances

Note that these asymptotic variances:

do not depend on M;

do not depend on previous iterations;

suggest the following interpretation of the N particles: as M
independent stationary chains of length P.

⇒ We can use adapt standard (initial sequence, spectral, etc.)
variance estimators for MCMC chains to get a single-run estimate of
the variance of our particle estimates.
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Practical implications

Take M ≪ N.

Take M ≥ the number of cores on a parallel machine.

Single-run variance estimate based on the M−chain
interpretation.
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Section 5

Numerical experiments
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Numerical experiment I

target: posterior of a logistic regression, sonar dataset (d = 63,
challenging, see C. and Ridgway, 2017).

sequence: tempering (automatic).

MCMC steps: random walk Metropolis (calibrated on
particles).

independent runs of standard SMC (varying k, the number of
MCMC steps), and waste-free SMC (varying M). Same
number of likelihood evaluations: N = 2× 105/k (standard
SMC), and N = 2× 105 for waste-free.
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Posterior expectation of the average of the components
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Log marginal likelihood
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Variance estimators
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Numerical experiment II
1 3 2
2 1 3
3 2 1

A Latin square of size 3.

Objective: counting the number l(d) of latin squares of size d .

Sequence:
πt(θ) = 1

Lt
µ(θ) exp {−λtV (θ)}

where V (θ) ≥ 0, = 0 iff θ is a Latin square. As λt →∞, Lt
goes to l(d).

MCMC kernels: Metropolis, swap two entries.
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Results (d = 11)
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Acceptance rate vs iteration
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Numerical experiment III

Objective: evaluate orthant probability P(X ≥ 0),
X ∼ N (µ, Σ) and/or sample from the corresponding truncated
Gaussian dist.

Sequence: increasing dimension.

MCMC steps: Gibbs
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Results
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Conclusion: waste-free

Same advantages as standard SMC:
automatable;
unbiased estimate of the normalising constant;
parallelisable (up to M cores)

In addition:
even more automatable (no need to choose k)
single-run variance estimators (not based on genealogy)

In particular, tempering SMC is a very good default strategy if you
have a single target distribution.
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Implementations

Python: https://github.com/nchopin/particles

Blackjax

STAN? (on Santa’s wishlist)
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Tempering distributions as a parametric model

Given µ and π, the tempering distributions:

πλ(θ) ∝ µ(θ)1−λπ(θ)λ

∝ µ(θ) exp{−λV (θ)}

where
V (θ) := − log {π(θ)/µ(θ)} .

define an (exponential) parametric model, with parameter
λ ∈ [0, 1].

The Fisher information of this model is I(λ) := varλ [V (θ)].
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Using the Fisher information

Proposition
For any convex, twice-differentiable function f , and λ′ ≈ λ,

Df (πλ|πλ′) = f ′′(1)I(λ)
2 (λ′ − λ)2 + O

(
(λ′ − λ)3

)

where Df (µ, π) := Eµ[f (π/µ)] (f -divergence).

This applies in particular:

to the KL divergence, f (x) = x log x ;

the χ2−divergence, f (x) = (x − 1)2.
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Equi-distant distributions

In practice, we’d like to choose 0 = λ0 < . . . < λT = 1 so that

Df (πλt−1 , πλt ) ≃ c

which implies:
λt − λt−1 ≃ c ′

√
I(λt−1)

for a certain c ′ > 0.
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Practical implications

If µ and π are IID distributions with d components, then
I(λ) = O(d). ⇒ Length of tempering sequence is O(d1/2).

the sequence (λt) may behave in a very different ways;

At iteration t, we could use the empirical variance of the
log-weights to approximate I(λt−1), and decide the next
exponent λt .

However, in practice, the usual ESS recipe works well too.
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Figure 1: ESS-adapted tempering sequences, µ = Nd(0, Id), π = Nd(0, Σ),
where Σ = 102Id (bigger), Σ = 10−2Id (smaller), and a mix of the two.
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Other considerations

One can interpret tempering SMC as a numerical approximation of
entropic mirror descent.

See the following manuscript for more details:

NC, crucinio F and Korba A (2023). A connection between
Tempering and Entropic Mirror Descent, arXiv:2310.11914.
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SMC2: sequential estimation of state-space
models

nicolas.chopin@ensae.fr
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Objectives

1 to derive sequentially

p(dθ, dx0:t |Y0:t = y0:t), p(y0:t), for all t ∈ {0, . . . ,T}

2 to obtain a black box algorithm (automatic calibration).
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Main tools of our approach

Particle filter algorithms for state-space models (this will be to
estimate the likelihood, for a fixed θ).
Iterated Batch Importance Sampling for sequential Bayesian
inference for parameters (this will be the theoretical algorithm
we will try to approximate).

Both are sequential Monte Carlo (SMC) methods.
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IBIS (C., 2001)

SMC method for particle approximation of the sequence p(θ|y0:t),
t = 0 : T . Based on the sequence of importance sampling steps:

p(θ|y0:t)

p(θ|y0:t−1)
∝ p(yt |y0:t−1, θ)

but doing only IS steps would not well. Resampling alone will not
help, because θ is not an ergodic process.

⇒ introduces an artificial dynamics by moving the θ particles
through a MCMC step (that leaves p(θ|y0:t) invariant).

In next slide, operations with superscript m must be understood as
operations performed for all m ∈ 1 : Nθ, where Nθ is the total
number of θ-particles.
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Sample θm from p(θ) and set ωm ← 1. Then, at time t = 0, . . . ,T

(a) Compute incremental weights

ut(θ
m) = p(yt |y0:t−1, θ

m), Lt =
1

∑Nθ
m=1 ω

m
×

Nθ∑

m=1
ωmut(θ

m),

(b) Update the importance weights,

ωm ← ωmut(θ
m). (1)

(c) If some degeneracy criterion is fulfilled, sample θ̃m

independently from the mixture distribution

1
∑Nθ

m=1 ω
m

Nθ∑

m=1
ωmKt (θ

m, ·) .

Finally, replace the current weighted particle system:

(θm, ωm)← (θ̃m, 1).
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Observations

Cost of lack of ergodicity in θ: the occasional MCMC move
Still, in regular problems resampling happens at diminishing
frequency (logarithmically)
Kt is an MCMC kernel invariant wrt π(θ | y1:t). Its parameters
can be chosen using information from current population of
θ-particles
Lt is a MC estimator of the model evidence
Infeasible to implement for state-space models: intractable
incremental weights, and MCMC kernel
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Our algorithm: SMC2

We provide a generic (black box) algorithm for recovering the
sequence of parameter posterior distributions, but as well filtering,
smoothing and predictive.

We give next a pseudo-code; the code seems to only track the
parameter posteriors, but actually it does all other jobs.
Superficially, it looks an approximation of IBIS, but in fact it does
not produce any systematic errors (unbiased MC).

nicolas.chopin@ensae.fr SMC2: sequential estimation of state-space models



Sample θm from p(θ) and set ωm ← 1. Then, at time t = 0, . . . ,T ,

(a) For each particle θm, perform iteration t of the PF: If
t = 0, sample independently X1:Nx ,m

0 from ψ0,θm , and
compute

p̂(y0|θm) =
1

Nx

Nx∑

n=1
wθ

0 (x
n,m
0 );

If t > 0, sample
(

X1:Nx ,m
t ,A1:Nx ,m

t

)
from ψt,θm

conditional on
(

X1:Nx ,m
0:t−1 ,A1:Nx ,m

1:t−1

)
, and compute

p̂(yt |y1:t−1, θ
m) =

1
Nx

Nx∑

n=1
wθ

t (X
An,m

t ,m
t−1 ,Xn,m

t ).
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(b) Update the importance weights,

ωm ← ωmp̂(yt |y0:t−1, θ
m)

(c) If some degeneracy criterion is fulfilled, sample(
θ̃m, X̃1:Nx ,m

0:t , Ã1:Nx
1:t

)
independently from

1
∑Nθ

m=1 ω
m

Nθ∑

m=1
ωmKt

{(
θm, x1:Nx ,m

0:t , a1:Nx ,m
1:t

)
, ·
}

Finally, replace current weighted particle system:

(θm,X1:Nx ,m
0:t ,A1:Nx ,m

1:t , ωm)← (θ̃m, X̃1:Nx ,m
0:t , Ã1:Nx ,m

1:t−1 , 1)
nicolas.chopin@ensae.fr SMC2: sequential estimation of state-space models



Observations

It appears as approximation to IBIS. For Nx =∞ it is IBIS.
However, no approximation is done whatsoever. This algorithm
really samples from p(θ|y0:t) and all other distributions of
interest.
The validity of algorithm is essentially based on two results: i)
the particles are weighted due to unbiasedness of PF estimator
of likelihood; ii) the MCMC kernel is appropriately constructed
to maintain invariance wrt to an expanded distribution which
admits those of interest as marginals; it is a Particle MCMC
kernel.
The algorithm does not suffer from the path degeneracy
problem due to the MCMC updates.
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The MCMC step

(a) Sample θ̃ from proposal kernel, θ̃ ∼ h(θ, d θ̃).
(b) Run a new PF for θ̃: sample independently

(X̃1:Nx
0:t , Ã1:Nx

1:t ) from ψt,θ̃, and compute
L̂t(θ̃, X̃1:Nx

0:t , Ã1:Nx
1:t−1).

(c) Accept the move with probability

1 ∧ p(θ̃)L̂t(θ̃, X̃1:Nx
0:t , Ã1:Nx

1:t )h(θ̃, θ)
p(θ)L̂t(θ,X1:Nx

0:t ,A1:Nx
1:t )h(θ, θ̃)

.

It can be shown that this is a standard Hastings-Metropolis kernel
with proposal

qθ(θ̃, x̃1:Nx
0:t , ã1:Nx

1:t ) = h(θ, θ̃)ψt,θ̃(x̃
1:Nx
0:t , ã1:Nx

1:t )

invariant w.r.t. to an extended distribution πt(θ, x1:Nx
0:t , a1:Nx

1:t ).
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Some advantages of the algorithm

Immediate estimates of filtering and predictive distributions
Immediate and sequential estimator of model evidence.
Easy recovery of smoothing distributions.
Principled framework for automatic calibration of Nx .
Population Monte Carlo advantages.
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Validity

SMC2 is simply a SMC sampler with respect to the sequence:

πt(dθ, dx1:Nx
0:t ,da1:Nx

1:t )

the reweigthing step t − 1→ t (a) extends the dimension, by
sampling X1:N

t , a1:N
t ; and (b) computes πt(·)/πt−1(·).

The move step is a PMCMC step that leaves πt invariant.
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How to choose Nx?

PMCMC: valid whatever Nx , but one needs to take Nx = O(T ) in
order to obtain a non-negligible acceptance rate. This is related to
the following type of results (Cérou et al, 2011; Whiteley, 2011):

Var[p̂(y0:T |θ)] ≤
CT
Nx

.

For SMC2, this suggests that one should start with a small value,
then increases Nx progressively. But:

1 how to increase Nx at a given time?
2 when should we increase Nx?
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How to increase Nx

Two possible strategies to replace our PF’s of size Nx with PF’s of
size N ′

x at iteration t:

1 exchange step: generate a new PF of size N ′
x , then do an

importance sampling step in order to swap the old PF and the
new PF.

2 a CSMC (Particle Gibbs step), when we select one trajectory,
throw away the Nx − 1 remaining ones, and regenerate N ′

x − 1
new trajectories using CSMC.

The latter should suffer less from weigh degeneracy, but it suffers
from a higher memory cost, i.e. O(TNxNθ) at time t.
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When to increase Nx?

Currently, we monitor the acceptance rate of the PMCMC
rejuvenation step; when it’s too small, we trigger an exchange step
(from Nx to 2Nx).

We’re working on more refined versions based on PG steps, and
better criteria to determine when and by how much we should
increase Nx (on-going work).
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Complexity

The overall complexity of SMC2 is O(NθT 2) if run until time T :

1 The cost of iteration t without a rejuvenation step is O(NθNx);
2 as explained before, we need to increase Nx progressively,

Nx = O(t);
3 The cost of the PMCMC rejuvenation step is O(tNθNx), but

we obtained the following result: if it is triggered whenever
ESS< γ, and Nx = O(t), then the occurence times are
geometric (τk , k = 1, 2, . . .).
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Numerical illustrations: SV
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Figure: Squared observations (synthetic data set), acceptance rates, and
illustration of the automatic increase of Nx .

See the model
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Numerical illustrations: SV
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Figure: Concentration of the posterior distribution for parameter µ.
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Numerical illustrations: SV

Multifactor model

yt = µ+βvt+v1/2
t εt+ρ1

k1∑

j=1
e1,j+ρ2

k2∑

j=1
e2,j−ξ(wρ1λ1+(1−w)ρ2λ2)

where vt = v1,t + v2,t , and (vi , zi)n=1,2 are following the same
dynamics with parameters (wiξ,wiω

2, λi) and w1 = w , w2 = 1− w .
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Numerical illustrations: SV
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Figure: S&P500 squared observations, and log-evidence comparison
between models (relative to the one-factor model).
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Numerical illustrations

Athletics records model

g(y1:2,t |µt , ξ, σ) = {1− G(y2,t |µt , ξ, σ)}
2∏

n=1

g(yi,t |µt , ξ, σ)

1− G(yi,t |µt , ξ, σ)

xt = (µt , µ̇t)
′ , xt+1 | xt , ν ∼ N (Fxt ,Q) ,

with
F =

(
1 1
0 1

)
and Q = ν2

(
1/3 1/2
1/2 1

)

G(y |µ, ξ, σ) = 1− exp

[
−
{

1− ξ
(

y − µ
σ

)}−1/ξ

+

]
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Numerical illustrations

Year

T
im

es
 (

se
co

nd
s)

480

490

500

510

520

530

1980 1985 1990 1995 2000 2005 2010

Figure: Best two times of each year, in women’s 3000 metres events
between 1976 and 2010.
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Numerical illustrations: Athletics records

Motivating question
How unlikely is Wang Junxia’s record in 1993?

A smoothing problem
We want to estimate the likelihood of Wang Junxia’s record in 1993,
given that we observe a better time than the previous world record.
We want to use all the observations from 1976 to 2010 to answer
the question.

Note
We exclude observations from the year 1993.

See the model
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Numerical illustrations

Some probabilities of interest

py
t = P(yt ≤ y |y1976:2010)

=

ˆ

Θ

ˆ

X
G(y |µt , θ)p(µt |y1976:2010, θ)p(θ|y1976:2010) dµtdθ

The interest lies in p486.11
1993 , p502.62

1993 and pcond
t := p486.11

t /p502.62
t .
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Numerical illustrations
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Figure: Estimates of the probability of interest (top) p502.62
t , (middle)

pcond
t and (bottom) p486.11

t , obtained with the SMC2 algorithm. The y -axis
is in log scale, and the dotted line indicates the year 1993 which motivated
the study.
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