
Monte Carlo and Simulation

nicolas.chopin@ensae.fr

nicolas.chopin@ensae.fr Monte Carlo and Simulation 1 / 102



Introduction

Section 1

Introduction

nicolas.chopin@ensae.fr Monte Carlo and Simulation 2 / 102



Introduction

Monte Carlo: principle

E[φ(X )] ≈ 1
N

N∑
n=1

φ(Xn)

with φ : X → R.

Rationale: MSE, Law of large number, central limit theorems.

Also: confidence intervals!

Need for simulation methods. Note that simulation has other uses beyond
Monte Carlo.
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Applications

Stats/ML: Frequentist vs Bayesian

For a model with parameter θ ∈ Θ, data y , likelihood p(y |θ):

Frequentist approach (MLE):

θ̂ = arg max
θ∈Θ

p(y |θ)

Bayesian approach: given a prior p(θ),

p(θ|y) = p(θ)p(y |θ)
p(y)

∝ p(θ)p(y |θ)

with p(y) =
∫

p(θ)p(y |θ)dθ.
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Applications

MC and maximum likelihood estimation

At first sight, the frequentist approach seems to be mostly
optimisation-based. However, for some models, the likelihood may involve
intractable integrals:

un-normalised models: p(y |θ) = exp gθ(y)/C(θ), but
C(θ) =

∫
exp gθ(y)dy is not easy to compute;

latent variables: p(y |θ) =
∫

p(x , y |θ)dx .

Instead of maximising directly (a MC approx of) the log-likelihood, one may
use alternative methods, which are also simulation-based, e.g.:

the EM algorithm (E=Expectation)

simulated MLE, indirect inference

MCMLE (Monte Carlo MLE)
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Applications

Bayesian Statistics

Bayesian estimators are (often) ratios of two integrals:

E[θ|y ] =
∫
θp(θ)p(y |θ)dθ∫
p(θ)p(y |θ)dθ

In practice however, one often uses MC methods that samples from
un-normalised densities.
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Applications

Bayesian Statistics and conjugacy

Conjugate model: prior and posterior belong to the same parametric family.
In such a case, the posterior is typically known exactly.

More elaborate models are often only conjugate conditionally (for one
parameter, when all the other parameters are fixed). How do we exploit this
property?

More generally, what is the relation between the statistical properties of the
model and the probabilistic properties of the sampler?
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Applications

Bayesian example

X ∼ Bin(n, p), p ∼ Beta(a, b), =⇒ p|x ∼ Beta(a + x , b + n − x).

Now consider a hierarchical model for different units: Xi ∼ Bin(ni , pi),
pi ∼ Beta(a, b), plus a prior for (a, b). What is the posterior? Is it still
tractable?
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Applications

Option pricing

Computing expectations with respect to continuous-time processes, in
particular diffusions, i.e. E[f (X )] where X = (Xt)t∈[0,T ].

See also statistical models in neurosciences, and other fields.

It is conceptually impossible to simulate a continuous-time process. Some
form of discretization is required.
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Applications

Simulation outside Monte Carlo

Go/Chess

Video games

generative AI (next slide)
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Applications

How to generate cat images (diffusion models)

Forward pass: add more and more noise until pixels are ≈ N(0, 1)
independent variates.

Backward pass: generate new cat images from pure noise.
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Pseudo-random number generators

Section 3

Pseudo-random number generators
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Pseudo-random number generators

Famous quotes, outline

Anyone who uses software to produce random numbers is in a “state of sin”.
John von Neumann

One should not use a random method to generate random numbers. Donald
Knuth

A PRNG is a convenient fiction. Ideally, it should:

be fast,
be reproducible,
look random (at least according to statistical tests, e.g. “die-hard”).
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Pseudo-random number generators

PRNGs: a few facts

The general structure of a PRNG: xt = f (xt−1), where
xt ∈ {0, . . . , 2k − 1}; by construction, xt is periodic.
LCG (linear congruential generators):

xt+1 = (axt + c) (mod m)

and take ut = xt/m so that the ut ’s are in [0, 1].
Take c = 0 for simplicity (then seed 0 is forbidden; and 0 is never
generated, provided m is prime, and a < m).
Assuming m is prime, the period is m − 1 iff ak − 1 is a multiple of m
for k = m − 1, but not k ≤ m − 2.
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Pseudo-random number generators

Lattice structure

Vectors of dim d lie on at most (d!m)1/d hyperplanes in the
d-dimensional unit cube; e.g. for m = 231 − 1, 108 for d = 3 and 39
for d = 10.

RANDU, the most ill-conceived random number generators ever
designed. . . has a = 65539 = 216 + 3, c = 231, and is such that
xt = 6xt−1 − 9xt−2.

See Table 2.1 p 44 of Glasserman for better choices of (a,c).

note that if a is not small, then computing a ∗ x is not easy even using
floating point operations. We could take a = 2k , but then generators
typically have bad properties (see RANDU).
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Pseudo-random number generators

More modern PRNGs

basic LCGs (even with good values of a and c) are now considered
obsolete.
Combine several generators to (a) increase period; and (b) reduce
lattice structure: e.g. take the sum of K generators modulo one
(Wichmann-Hill).
Mersenne twister: very popular 32-bit PRNG (Python, R, Matlab, etc),
has period 219937 − 1.
Also push for 64-bit PRNG.
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Pseudo-random number generators

Main conclusion

DO NOT use C standard implementation rand().
DO NOT implement your own PRNG.
DO resort to some modern implementation of a modern generator,
such as Mersenne twister; see e.g. GSL in C.
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Non-uniform simulation

Section 4

Non-uniform simulation
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Non-uniform simulation

Outline

A few general recipes:

inversion
rejection
chain rule

plus several specialised ones (e.g. Box-Muller).
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Non-uniform simulation

inversion

inversion algorithm
If X has CDF F , take

X = F −1(U), U ∼ U [0, 1].

Applications: exponential, Laplace, Gaussian?
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Non-uniform simulation

Box-Muller

Box-Muller {
X =

√
−2 log(U) ∗ cos(2πV )

Y =
√

−2 log(U) ∗ sin(2πV )

Then X , Y ∼ N(0, 1), independently.
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Non-uniform simulation

A sneaky introduction to rejection

To understand the coming slides, note that the following algorithm

Rejection
Repeat X ∼ U(A)
Until X ∈ B.

draws from U(B) (provided B ⊂ A).
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Non-uniform simulation

Modified Box-Muller

Box-Muller with rejection
Repeat

U, V ∼ U [−1, 1]
Until S := U2 + V 2 ≤ 1.
Return {

X = U
√

−2 log(S)/S
Y = V

√
−2 log(S)/S

Then X , Y ∼ N(0, 1), independently.

Note: avoid computing sin and cos.
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Non-uniform simulation

Rejection

Let f , g PDFs such that f ≤ Mg (with M ≥ 1).

Accept-reject
Repeat

X ∼ g , U ∼ U [0, 1],

Until U ≤ f (X )/Mg(X ).

Properties: X ∼ f , number of draws until acceptance is Geometric(1/M).

Justification: uniform sampling under the graph, see next slide.
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Non-uniform simulation

Uniform sampling under the graph

For a function f , let G = {(x , y) ∈ R2 : 0 ≤ y ≤ Mf (x)}, then

(X ,Y ) ∼ U(G) ⇔
{

X ∼ f
Y |X = x ∼ U [0,Mf (x)]

Note: this construction is in fact not restricted to real-valued random
variables.
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Non-uniform simulation

Ziggurat algorithm for N(0, 1) (Marsaglia, 60?)

K Slices Sk = [−xk , xk ] × [yk , yk+1] constructed to have the same area.
1 Choose slice k (uniformly).
2 Sample (X ,Y ) within slice k.
3 If X ≤ xk+1, return X , else, if Y ≤ φ(X ), return X , else go to 1.

Note: If slice 0 is selected, extra steps required (truncated Gaussian
distribution).
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Non-uniform simulation

Sampling from a truncated Gaussian

The distribution of X ∼ N(0, 1) conditional on X > c has density:

f (x) ∝ exp{−x2/2}1{x > c}.

A good strategy to sample from f is to use rejection with proposal
g(x) = λ exp{−λ(x − c)}1{x > c} (translated Exponential).

Exercise: find the optimal value of λ given c.
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Non-uniform simulation

Multivariate simulation: chain-rule decomposition

The inverse transform method is restricted to real-valued random variables,
the inverse transform is not.

General recipe to generate jointly (X ,Y ,Z ), with PDF f (x , y , z):
1 Generate X ∼ fX (x) (marginal). Call x the output.
2 Generate Y |X = x ∼ fY |X (y |x) (conditional given X = x). Call y the

output.
3 Generate Z |X = x ,Y = y ∼ fZ |Y ,X (z |x , y) (full conditional). Call z

the output.
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Non-uniform simulation

Gaussian vectors

The standard method to generate X ∼ Nd(µ,Σ) is:

Generate Z1, . . . ,Zd ∼ N(0, 1).
Compute C = Choleksy(Σ). (i.e. Σ = CCT , and C is lower triangular)
Return X = µ+ CZ .

The Cholesky decomposition costs O(d3).
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Non-uniform simulation in spaces other than Rd
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Non-uniform simulation in spaces other than Rd

Outline

Some recipes to sample specific cases of

distributions over constrained sets
discrete distributions
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Non-uniform simulation in spaces other than Rd

How to sample N sorted uniforms

Naive method: sample Un ∼ U [0, 1] for n = 1, . . . ,N, return sort(U1:N).
Cost is O(N log N) (not bad).

Smart O(N) method:

Sample E1, . . . ,EN+1 ∼ Exp(1).
Compute V1:(N+1) = cumsum(E1:(N+1)).
Return (V1/VN+1, . . . ,VN/VN+1).
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Non-uniform simulation in spaces other than Rd

How to sample uniformly on the sphere

Sample X ∼ Nd(0, Id).
Return X/∥X∥.
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Non-uniform simulation in spaces other than Rd

How to sample from a discrete distribution over N

The inverse methods extends to the discrete case. Simply define:

F −1(u) = inf{x : F (x) ≥ u}

In practice:

Sample U ∼ U [0, 1]
If U ≤ p0, return 0
If p0 < U ≤ p0 + p1, return 1
etc
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Non-uniform simulation in spaces other than Rd

What if N and K are large

Suppose we want to sample N times from a distribution over
{0, . . . ,K − 1}. If we run the algorithm of the previous slide N times, we do
O(NK ) operations (on average). Can we do better?

Solution: use as input N sorted uniforms. Then cost is O(N + K ).

Application: (weighted) bootstrap.

nicolas.chopin@ensae.fr Monte Carlo and Simulation 37 / 102



Non-uniform simulation in spaces other than Rd

What if N and K are large

Suppose we want to sample N times from a distribution over
{0, . . . ,K − 1}. If we run the algorithm of the previous slide N times, we do
O(NK ) operations (on average). Can we do better?

Solution: use as input N sorted uniforms. Then cost is O(N + K ).

Application: (weighted) bootstrap.

nicolas.chopin@ensae.fr Monte Carlo and Simulation 37 / 102



Non-uniform simulation in spaces other than Rd

Inverse CDF algorithm

def inversecdf(su,W):
""" Input: su[0:N] sorted uniforms

W[0:K] normalised weights (sum to one)
Output: A[0:N] indexes (in {0,...,K-1})

"""
j=0; s=W[0]; N = su.shape[0]
A = empty(N,'int')
for n in xrange(N):

while su[n]>s:
j += 1
s += W[j]

A[n] = j
return A
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Non-uniform simulation in spaces other than Rd

How to sample a permutation

“Naive” O(N log N) method: σ = argsort(U1:N).

Smart O(N) method:

Let σ = (1, 2, . . . ,N).
I ∼ U(1, . . . ,N), swap σ(1) and σ(I).
I ∼ U(2, . . . ,N), swap σ(2) and σ(I).
etc.
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Variance reduction

Section 6

Variance reduction
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Variance reduction

Objectives, outline

Given a certain quantity

I = E[φ(X )] =
∫

X
f (x)φ(x) dx

find a Monte Carlo estimator with smaller variance than the standard
estimator

1
N

N∑
n=1

φ(Xn).

Recipes:

antithetic variables
control variates
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Variance reduction

Antithetic variables

In cases where φ(−X ) has the same distribution as φ(X ), use:

Îanti = 1
2N

N∑
n=1

{φ(Xn) + φ(−Xn)}

Lemma:
Var(̂Ianti) ≤ Var(̂I)

Note: we have less variance, but twice as many evaluations of φ. . .
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Variance reduction

Control variates (univariate case)

Let Z a real-valued r.v. such that E(Z ) = 0. For any β,

Îcv = 1
N

N∑
n=1

{φ(Xn) − βZn}

is an unbaised estimator of I = E[φ(X )].

The smallest variance is obtained by taking

βopt = Cov(φ(X ),Z )
Var(Z ) .
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Variance reduction

Control variates (multivariate case)

Z 1, . . . ,ZK are mean-zero real-valued r.v. Take

Îcv = 1
N

N∑
n=1

{φ(Xn) −
K∑

k=1
βkZ k

n }.

In practice, replace βk by β̂k , the OLS estimate for regression:

φ(Xn) = α+
K∑

k=1
βkZ k

n + εn.
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Variance reduction

Variance reduction and Rao-Blackwellisation

Often variance reduction techniques may be cast as particular
Rao-Blackwellisation schemes, i.e. the idea that

Var [E[φ(X )|Z ]] ≤ Var[φ(X )].
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Importance sampling

Section 7

Importance sampling
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Importance sampling

A simple identity

E[φ(X )] =
∫

X
φ(x)f (x) dx

=
∫

X
φ(x) f (x)

g(x)g(x) dx = Eg

[ f (X )
g(X )φ(X )

]

assuming Supp(f ) ⊂ Supp(g).

Any expectation w.r.t. PDF f may be rewritten thusly as an expectation
w.r.t. PDF g (which may be easier to simulate from):

ÎIS = 1
N

N∑
n=1

f (Xn)
g(Xn)φ(Xn).

nicolas.chopin@ensae.fr Monte Carlo and Simulation 47 / 102



Importance sampling

How to choose proposal g?

1 Check that variance exists, ⇔ Eg
[
φ(X )2 f (X)2

g(X)2

]
< ∞. (Sufficient

condition: f /g ≤ M, and Ef [φ2] < ∞.)

2 Optimal g (in terms of minimizing variance) is

gopt(x) ∝ f (x)|φ(x)|.

It is often not possible to simulate from gopt, so more generally, it is
recommended to take g ≈ f .
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Importance sampling

Auto-normalised IS

Sometimes either f or g are known only up to a constant: f = fu/Zf ,
g = gu/Zg , and Zf , Zg are intractable. In that case, we use the
auto-normalised IS estimator:

ÎAIS =
∑N

n=1 wnφ(Xn)∑N
n=1 wn

, wn = fu(Xn)
gu(Xn) .

This estimator is biased, and asymptotically Gaussian:
√

N
(
ÎAIS − I

)
⇒ N(0, vf /g)

with vf /g = Eg [
(

f
g

)2
(φ− I)2] (assuming this quantity is < ∞).
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Importance sampling

How to choose g (bis repetita)

Same points as for standard IS:
1 Check that at least vf /g < ∞; sufficient condition is (a) f /g < M and

(b) Varf (φ) < ∞.
2 Optimal g is

gopt(x) ∝ f (x)|φ(x) − I|

which depends on I. . . In practice, take g ≈ f .
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Importance sampling

Estimating the Z ’s, effective sample size
Note that AIS also provides an estimate of Zf /Zg :

E
[

1
N

N∑
n=1

wn

]
= Zf

Zg

and of vf /g :

N
∑N

n=1 w2
n

{
φ(Xn) − Î

}2

(∑N
n=1 wn

)2 .

Similarly, the effective sample size(∑N
n=1 wn

)2

∑N
n=1 (wn)2 ∈ [1,N]

is a good indicator of AIS efficiency.
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Importance sampling

Curse of dimensionality

For X = Rd , f (x) =
∏d

i=1 f1(xi), g(x) =
∏d

i=1 g1(xi), one has:

Eg [f 2/g2] = Cd , C ≥ 1.

We expect the variance of IS to grow exponentially with the dimension.
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Importance sampling

Resampling

How to transform weighted sample (wn,Xn) into an unweighted sample?

Simply draw randomly X̃n from

N∑
n=1

WnδXn , Wn = wn∑N
m=1 wm

(as in the bootstrap).

See previous chapter on multinomial sampling.
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Quasi-Monte Carlo

Section 8

Quasi-Monte Carlo
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Quasi-Monte Carlo

Principle

Often one may rewrite quantity of interest as:

I = E[φ(U)], U ∼ U [0, 1]d

and then use

Î = 1
N

N∑
n=1

φ(Un).

Can we construct (deterministic or random) points U1, . . . ,UN in [0, 1]d so
that the approximation error is smaller than with standard Monte Carlo
(i.e. Un are IID uniforms)?
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Quasi-Monte Carlo

Stratification (d = 1)

Generate N/K uniforms in each interval [(k − 1)/K , k/K ],
k = 1, . . . ,K . (Note the connection with antithetic variables.)

Or even take K = N, i.e. generate Un ∼ U [(n − 1)/N, n/N].

or even take un = (2n − 1)/2N, the (deterministic) centre of interval
[(n − 1)/N, n/N]).
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Quasi-Monte Carlo

Stratification for d > 1: Latin hypercube sampling

Generate the Un’s so that exactly one point falls in each horizontal or
vertical strip (of area 1/N).

Tip: use random permutations.
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Quasi-Monte Carlo

Koksma–Hlawka inequality

|̂I − I| ≤ V (φ)D⋆(u1:N)

where V (φ) is the variation of φ (in the sense of Hardy and Krause), and

D⋆(u1:N) = sup
[0,b]⊂[0,1]d

∣∣∣∣∣N−1
N∑

n=1
I[0,b](un) −

d∏
i=1

bi

∣∣∣∣∣
is the star discrepancy.
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Quasi-Monte Carlo

Proof for d = 1

N−1
N∑

n=1
φ(un) −

∫ 1

0
φ(u) du =

∫ 1

0
δ(u)φ′(u) du

where δ(u) = u − N−1∑N
n=1 1(un ≤ u).
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Quasi-Monte Carlo

Why is the previous inequality so important?

Because we know how to construct:

point-sets such that D⋆(u1:N) = O
(

(log N)d−1

N

)
sequences such that D⋆(u1:N) = O

(
(log N)d

N

)
hence we can do better than Monte Carlo, i.e. OP( 1√

N ).

Side note: there are good reasons to believe that these rates are optimal.
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Quasi-Monte Carlo

d = 1

Take un = (2n − 1)/2N, n = 1, . . . ,N. Then

D⋆(u1:N) = 1
2N .
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Quasi-Monte Carlo

Van der Corput (sequence for d = 1)

In base b, for n =
∑k

j=0 aj(n)bj , take

un =
k∑

j=0
aj(n)b−1−j .

e.g. for b = 2: 1/2, 1/4, 3/4, 1/8, . . .

For b = 3: 1/3, 2/3, 1/9, . . .

Then D⋆(u1:N) = O(log N/N).
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Quasi-Monte Carlo

d > 1: Halton & Hammersley

Halton sequence: component j is a van der Corput sequence in base bj ,
where the bj are the first d prime numbers. Discrepancy is O((log N)d/N).

Hammersley point set (of size N): take N first elements of Halton
sequence of dimension d , replace last component by n/N.
Discrepancy is O((log N)d−1/N).

Note however that for large d , both Halton and Hammersley require many
points to cover the space. . .
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Quasi-Monte Carlo

Other low-discrepancy sequences and point sets

Niederreiter
Faure
Sobol’
. . .
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Quasi-Monte Carlo

RQMC (randomised QMC)

QMC is purely deterministic. It lacks a simple way to evaluate the
numerical error. Imagine we are able to randomise U1:N so that

1 Un ∼ U [0, 1]d (marginally).
2 U1:N is still a low-discrepancy point-set (or sequence).

Then

E
[

1
N

N∑
n=1

φ(Un)
]

= E[φ(U)]

and we can evaluate the numerical error through the empirical variance
(over repeated runs).
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Quasi-Monte Carlo

RQMC: random shift

The simplest RQMC strategy is to generate a low-discrepancy point set
v1:N , W ∼ U [0, 1]d , then take:

Un = vn + W (mod 1) (componentwise)
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Quasi-Monte Carlo

RQMC: a surprising result

Owen (1998) showed that for smooth functions φ

Var[̂I] = O
(

(log N)(d−1)/2

N3

)

when scrambling (a particular RQMC technique) is used.
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Quasi-Monte Carlo

conclusion: QMC vs MC

QMC has a better convergence rate.
But for large d , QMC might need a very large N to beat MC.
With MC, the (square) error is simple to estimate, whereas for QMC,
we have only a deterministic bound, which is hard to evaluate, and is
often pessimistic. See RQMC however.
Variance reduction: may be used in conjunction with (R)QMC.
(Recommendation is to do variance reduction, then replace MC with
QMC).
Practical recommendation: scrambled Sobol’ seems like a good default
choice (or Latin Hypercube sampling for very high dimensions).
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Markov chain Monte Carlo

Section 9

Markov chain Monte Carlo
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Markov chain Monte Carlo

Outline

In some settings, simulating independently X ∼ π(dx) is difficult, but it is
possible to simulate a Markov chain (Xn) that leaves π(dx) invariant.
Then, we still have

1
N

N∑
n=1

φ(Xn) ≈ Eπ[φ(X )]

in some sense.

This is the case in particular when density π is known only up to a constant.
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Markov chain Monte Carlo

Definitions

A Markov kernel K (x , dy) is an application X → P(X ).

A Markov kernel K leaves distribution π invariant iff∫
X
π(dx)K (x , dy) = π(dy).

A Markov kernel is reversible w.r.t. π iff

π(dx)K (x , dy) = π(dy)K (y , dx).

This implies that π is invariant.
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Markov chain Monte Carlo

Metropolis-Hastings

Let Q(x , dy) a Markov kernel, such that Q(x , dy) = q(x , y)dy .

Hastings-Metropolis step
Input: Xn−1

1 Generate Y ∼ Q(Xn−1, dy)
2 With probability 1 ∧ r(Xn−1,Y ), where

r(x , y) = π(y)q(y , x)
π(x)q(x , y)

accept Y , i.e. Xn = Y ; otherwise Xn = Xn−1.

Property: This kernel is reversible (w.r.t. π).
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Markov chain Monte Carlo

An important practical point

Note that Hastings-Metropolis may be implemented even if π is known only
up to a constant: π(x) = πu(x)/Z , Z is intractable. Then

r(x , y) = π(y)q(y , x)
π(x)q(x , y) = πu(y)q(y , x)

πu(x)q(x , y)
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Markov chain Monte Carlo

Examples of MH algorithms

1 q(x , y) = q(y , x), for instance q(x , y) = N(y ; x ,Σ) (Gaussian random
walk); then

r = π(y)
π(x)

2 q(x , y) = q(y): independent Metropolis; then

r = π(y)q(x)
π(x)q(y)

3 Langevin proposal:

Y ∼ N(x + 1
2Σ∇ log π(x),Σ)
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Markov chain Monte Carlo

(two-block) Gibbs sampling

Assume X = (X1,X2), π(x) = π(x1, x2), with conditional distributions
π1|2(x1|x2), π2|1(x2|x1).

Gibbs sampling step
Input: Xn−1 = (Xn−1,1,Xn−1,2)

1 Generate Xn,1 ∼ π1|2(•|Xn−1,2).
2 Generate Xn,2 ∼ π2|1(•|Xn,1).

Again, this leaves invariant π. Gibbs can be generalised to k > 2 blocks.
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Markov chain Monte Carlo

Combining chains

1 If K1, K2 leave π invariant, then so does K1K2.
2 Within Gibbs, we can replace the exact simulation of X1|X2 (say) by a

Metropolis step that leaves invariant π1|2.
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Markov chain Monte Carlo

MCMC in practice

1 Assess how long it takes for the chain to reach stationarity;
2 When chain seems stationary, check for intra-correlations, i.e. look at

ACF (Auto-Correlation Function).

Then we compute averages

1
N − N0

N∑
n=N0+1

φ(Xn)

where N0 is burn-in time, and N − N0 is sufficiently large relative to the
auto-correlation time (i.e. time k so that Xn and Xn+k are nearly
uncorelated).
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Markov chain Monte Carlo

scaling random walk Metropolis

One big hurdle with random walk Metropolis is the choice of Σ, in the
proposal N(x ,Σ). If too small, chain moves slowly, if too large, proposals
always get rejected.

Theory (e.g. Roberts and Rosenthal, 2004) indicates that one should take

Σ = cΣπ

where Σπ is the covariance matrix of target π, and c calibrated so that
acceptance rate is ≈ 0.25.
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Markov chain Monte Carlo

a tiny bit of MCMC theory

1 From an arbitrary starting point X0 = x0, and any ε > 0, we have

∥Kn(x0, dxn) − π(dxn)∥TV ≤ ε

for n large enough.
2 CLT:

√
N
(

1
N

N∑
n=1

φ(Xn) − I
)

⇒ N(0,V (φ))

with
V (φ) = Varπ(φ) + 2

∞∑
k=1

γk(φ)

and γk(φ) = Cov[φ(Xn), φ(Xn+k)].
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Markov chain Monte Carlo

Adaptive MCMC?

Can we use past samples to automatically calibrate Metropolis-Hastings?
e.g. at time t, do a random walk Metropolis step, of size Σ = cΣ̂t , where
Σ̂t is the empirical covariance matrix computed from X0, . . . ,Xt−1.

Big theoretical problem: we are not simulating a Markov chain any more
(Xt depends on the whole past). Convergence is more difficult to establish.
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Interlude: Bayesian classification

Section 10

Interlude: Bayesian classification
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Interlude: Bayesian classification

Outline

Consider model with responses yi ∈ {−1, 1}, covariates xi ∈ Rp, likelihood

L(x , y ;β) =
nd∏

i=1
F (yiβ

T xi)

with F = Φ (probit), or F = L (logit), and prior

π(β) = 1

The posterior is

π(β|x , y) ∝
nd∏

i=1
F (yiβ

T xi)

We will use this example to discuss many of the approaches seen so far.
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Interlude: Bayesian classification

Laplace approximation

Taylor expansion of log posterior density around its mode,
β̂ = arg max π(β|x , y) (MLE):

log π(β|x , y) ≈ log π(β̂|x , y) − 1
2(β − β̂)T H(β − β̂)

implies a Gaussian approximation of the posterior: ≈ N(β̂,H−1).

In practice, this Gaussian approximation may be:
1 obtained numerically (Newton);
2 used as a proposal in various approaches (e.g. importance sampling).
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Monte Carlo optimisation

Section 11

Monte Carlo optimisation
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Monte Carlo optimisation

Objectives

Numerical maximisation:
max
θ∈Θ

ψ(θ)

when
1 ψ can be evaluated point-wise, but is difficult to maximise by standard

methods: Exploration
2 ψ is an (intractable) expectation:

ψ(θ) = Eθ[h(X , θ)]

Stochastic approximation

Statistical applications: MLE
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Monte Carlo optimisation

Exploration

When ψ can be evaluated point-wise, one may sample N times from some
distribution π(dθ), and return maxn=1,...,N ψ(θn); for instance if Θ is
compact, take π(dθ) to be the Uniform dist. over Θ.

In particular, consider
πλ(θ) ∝ exp{λψ(θ)}.

When λ (inverse temperature) increases, support of πλ gets more
concentrated around modal regions, but in return it may be more difficult to
sample from πλ.
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Monte Carlo optimisation

Simulated annealing

Simulate a (inhomogeneous) Markov chain as follows: at iteration t, do a
Metropolis step w.r.t. πλt , and make λt increase at a logarithmic rate.
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Monte Carlo optimisation

The Cross-Entropy method

For some parametric family {fξ, ξ ∈ Ξ}, choose initial ξ0, then iteratively:
1 Sample θ1, . . . , θn ∼ fξt .
2 Estimate (using e.g. MLE) ξt+1 from the 10% best of the θi (in terms

of ψ(θi)).
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Monte Carlo optimisation

Other heuristic optimisation procedures

genetic algorithms
tabu search
ant colony algorithm

and also more specialised ones.
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Monte Carlo optimisation

Stochastic approximation

One has: ψ(θ) = Eθ[h(X , θ)] (double dependence on θ). Possible
approaches:

1 If Expectation is w.r.t. a fixed dist’ f , ψ(θ) = E[h(X , θ)], generate
X1, . . . ,Xn ∼ f , maximise θ → N−1∑N

n=1 h(Xn, θ).
2 Gradient-based approach, e.g.

θt+1 = θt + αt∇̂ψ(θt)

where ∇̂ψ(θt) is some MC estimate of the gradient of ψ.
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Monte Carlo optimisation

Robins-Monroe

Take αt such that αt → 0, and
∑

t αt = ∞; e.g. αt = Ct−b, 1/2 < b ≤ 1.

To estimate the gradient, if ψ(θ) = Eθ[h(X )], one has

∇ψ(θ) = Eθ[h(X )sθ(X )], sθ(x) = ∂

∂θ
log fθ(x)

and thus a possible choice is:

∇̂ψ(θ) = 1
N

N∑
n=1

h(Xn)sθ(Xn)
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Selected applications of Monte Carlo

Section 12

Selected applications of Monte Carlo
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Selected applications of Monte Carlo

Outline

1 Derivative pricing
2 Statistical applications: MCEM, Bayesian inference, ABC
3 Enumeration
4 Go playing. . .
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Selected applications of Monte Carlo

Derivative pricing: statement

There, X is continuous-time process on [0,T ], and φ could be:

φ(X ) = (K − XT )+

φ(X ) = (K − 1
k
∑

i Xti )+

φ(X ) = (K −
∫

Xtdt)+

φ(X ) = I{τb > T}(XT − K )+, with τb = inf{t : Xt ≤ b}
etc.
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Selected applications of Monte Carlo

Simulating Brownian paths

For a Brownian motion {Wt}, several ways to simulate exactly vector
(Wt1 , . . . ,Wtk ):

random walk: Wti |Wti−1 ∼ N(Wti−1 , ti − ti−1)
Brownian bridge: Wti |Wti−1 ,Wti+1 ∼

N
((ti+1 − ti)Wti−1 + (ti − ti−1)Wti+1

ti+1 − ti−1
,
(ti+1 − ti)(ti − ti−1)

ti+1 − ti−1

)
and order times according to a van der Corput sequence: first tk , then
tk/2, tk/4, and so on.
principal components

Try to think about the implications for QMC. . .
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Selected applications of Monte Carlo

QMC and Brownian paths

Top: all but first component fixed; bottom, all but seventh component fixed

Source: Chap. 8 of Leobacher and Pillichshammer (2014).
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Selected applications of Monte Carlo

Euler discretization

In general, diffusion processes need to be discretized:

dXt = µ(Xt)dt + σ(Xt)dWt

becomes
Xt+1 − Xt = δµ(Xt) + σ(Xt)ϵt , ϵt ∼ N(0, δ)

where δ is the discretization step.

Choice of δ: trade-off between discretization bias and CPU time.
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Selected applications of Monte Carlo

Multi-level Monte Carlo

Consider a sequence of decreasing steps: δ0 > . . . > δL; say δl = 2−l .

EδL(φ) = Eδ0(φ) +
L∑

l=1

{
Eδl (φ) − Eδl−1(φ)

}

To get a low-variance estimate for each level, use coupling: e.g. use
Brownian bridge construction to obtain the finer level from the coarser level.

To minimise variance, choose Nl (number of samples for level l) to be:

Nl ∝
√

Vl/Cl

where Vl (resp. Cl) is variance (resp. CPU cost per sample) of estimate for
level l .
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Selected applications of Monte Carlo

Other worthy points

control variates: simulation involves many Gaussian variables, with
known mean and variance
antithetic variables (Gaussians variables are symmetric)
QMC very popular nowadays in option pricing
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Selected applications of Monte Carlo

Statistical applications

Bayesian estimation: already covered, see MCMC

Frequentist estimation: MC for the E part of EM

Likelihood-free inference
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Selected applications of Monte Carlo

MCEM = Monte Carlo EM

For a statistical model involving a latent X and an observed y , maximise
iteratively:

θt+1 = arg max
θ

E[log L(X , y ; θ)]

where the expectation is w.r.t. the distribution of X given Y = y and
θ = θt .

When the expectation is not tractable: use Monte Carlo. (To get
convergence, use a larger and larger Monte Carlo sample)

See also SAEM.
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Selected applications of Monte Carlo

ABC (likelihood-free inference)

Data y⋆, model p(y |θ) such that (a) one can simulate from p(y |θ); (b) one
cannot compute the likelihood p(y |θ). (Many scientific models fall in this
category.)

ABC (Approximate Bayesian inference) samples from:

pε(θ, y |y⋆) ∝ p(θ)p(y |θ)I(∥s(y) − s(y⋆)∥ ≤ ε).
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